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Abstract. In thispaper we introducedand developed the theoryof Modified InteriorDistance

Functions(MIDFs).

The MIDF isa ClassicalLagrangian (CL) fora constrainedoptimizationproblem, wh/ch is

equivalenttotheinitialone and can be obtainedfi-omthelatterby monotone transformationboth the

objectivefimctionand constraints.

In contrastto the InteriorDistance Functions CIDFs),which played a fundamental rolein

Interior Point Methods (IPMs), the MIDFs are defined on an extended feasible set and along with

center, have two extra tools, which control the computational process: the barrier parameter and the

vector of Lagrange multipliers.
The extra tools allow to attach to the MIDFs very important properties of Augmented

Lagrsngeans. One can consider the MIDFs as Interior Augmented Lagrangeans. It makes MIDFs

similar in spirit to Modified Barrier Functions (MBFs), although there is a fundamental difference

between them both in theory and methods.

Based on MIDFs theory,Modified Center Methods (MCM.s) have been developed and

analyzed.

The MCMs find an unconstrained minimizer in primal space and update the Lagrange

multipliers, while both the center and the barrier parameter can be fixed or updated at each step.

The MCMs convergence was investigated, and their rate of convergence was estimated. The

extension oftbe fea._'ble set and the special role of the Lagrange multipliers allow to develop MCMs,

which produce, in case ofnondesenerate constrained optimization, a primal and dual sequences that

converge to the primal-dual solutions with linear rate, even when both the center and the barrier

parameter are fixed. Moreover, every Lagrange multipliers update shrinks the distance to the primal

dual solution by a factor 0 < 3' < I which can be made as small as one wants by choosing a fixed

interiorpointas a "center" and a fixed but large enough barrier parameter.
The nmn_cal realization of MCM leads to the Newton MCM (NMCM). The approximation

for the primal mlnlrnl,pr one finds by Newton Method followed by the Lagrange multipliers update.

Due to the MCM convergence, when both the center and the barrier parameter are fixed, the

condition ofthe MIDF Hessians and the neighborhood of the primal minimizer where Newton method

is "well" defined remains stable.

It contributes to both the complexity and the numerical stability of the NMCM.

'Partially supported by NASA Grant NAG3-1397 and NSF Grant DMS-9403218



I. Introduction,

Inthemid 60s,P. Huard [BuiH66], [I-Iuar67a]and [Huar6?'o]introducedInteriorDistance

Functions0DFs) and developedInteriorCenterMethods (ICMs) forsolvingconstrainedoptimization

problems. Laterthesefunctions,as wellas InteriorCenter Methods, were intensivelystudiedby A.

Fiaccoand G. McCormick [F'mcM68],K. Grossman and A. Kaplan [GrosK81], K. Mifflin['_tl_6],

and E. Polak ['POLE71],justto mention a few.

Itwas found ['PolE71]thatthereare closeconnectionsnot onlybetween the IDFs and the

BarrierFunctions[FiacM68], but alsobetween ICMs and methods of feasibledirections[Zout60],

[ZPP63].

The ICMs consist of fagling at each step a central ('ma sense) point of the Relaxation Feasible

Set (RFS) and updating it in accordance with the objective function level that has already been

attained. The RFS is the intersection of the feaslt_ie set with the Relaxation (level) set of the objective

function at the attained level. In the Classical ICM the "center" is sought as a minimum of the IDF.

Interest in the IDFs, as well as in the Barrier Functions ('BFs), grew dramatically in connection

with the well known developments in mathematical programming during the last ten years since N.

Karmarkar published his projective scaling method [Kar84]. In fact, his potential function is an IDF

and his method is a Center Method, which produces centers of spheres, which belong to the feasible

polytop. The concept of centers has a long and interesting history.

In the 60s, concurrently with P. Huard's ICM, the Gravity .Center Method was independently

developed by A. Levin [Lev65] and D. Newman [New65], the At_e Scaling (ellipsoid centers)

Method by I. Dikin [Dik67], and the Chebyshev Center Method by S. Zuchovitsky, IL Polyak and

M. Pimak [ZPP69]. The _ Scaling Method, which one can view as a method of feasible direction

with special direction normalization, was rediscovered in 1986 independently by E. Barnes ['Barn86]

and 1L Vanderbei, M. Maketon and B. Freedman [VanMF86] as a simplified version of Karmarkar's

method.

In the 70s, N. Shot [ShT0] and independently D. Yudin and A. Nemirovsky [YuN76]

developed the ellipsoid method, which generates centers of ellipsoids with minimal volume

circumscribed around some convex sets. Using this method, L. Khachiyan [Kh79] was the first to

prove in 1979 the polynomial complexity of the Linear Programming problem. Iris result had a great

impact on the complexity theory, but numerically the ellipsoid method appeared to be not efficient.

It is interesting to note that the rate of convergence, which was established by I. Dikin [Dik74] for

the Atrane Scaling Method, in case of nondegenerate linear programming problems, is asymptotically

much better tlma the rate of convergence of the ellipsoid method and numerically, as it turned out,

the AfiSne Scaling Method is much more efficient [AdRVK89].

The concept ofceraers became extremely popular in the 80s. Centering and reducing the cost

are two basic ideas that are behind the develolanenm in the Interior Point Methods (IPMs) for the last

ten years. Centering means to stay away from the boundary. A successful answer to the main

question: how far from the boundary one should stay, was given by Sonnevend [Son85] (see also

[JarSS88]) through the definition of the analytic center ofa polytop. The analytic center is a unique

minimizer of the Interior Distance Function. The central path - curve, which is formed by the analytic

centers, plays a very important role in the IPM developments. R was brilliantly shown in the paper

by C. Gonzaga [Gon92].

Following the central path J. Renegar [Ren88] obtained the first path-following algorithm



with O(VrnLJnumber of iterations against O(nL) of' the N. Karmarkar's method.
Soon a/_erwards, C. Gonzaga [Gon88] and P. Valdya [Vaid87] described algorithms based

on thecenteringideaswithoverallcomplexityoraL) arithmeticoperations,whichisthebestknown
resultso far.

Inthecourseofthe30 yearshistoryofcentermethods itbecame clearthatboththetheore-

ticalimportanceand thepracticalefficiencyof thecentertypemethods dependsverymuch on the

"quality"ofthecenterandon thecosttocompute thecenteroritsapproximation.
The centerwas and stillisthemaintooltocontrolthecomputationalprocessina wide variety

ofcentermethodsingeneraland inIPMs inparticular.

However,stillthereisafundamentalquestion,whichhastobe answered:how consistentthe

main idea of centermethods - to stayaway from the boundary with the main purpose of

constrained optimization - to find a solution on the boundary.
Inthispaperwe willtrytoaddressthisissue.The purposeofthispaperistointroducethe

ModifiedInteriorDistanceFunctions(MIDFs) andtodeveloptheirtheory.Based on thistheory,we

aregoingtodeveloptheModifiedCenterMethods (MCMs), toinvestigatetheirconvergenceand

toestablishtheirrateofconvergence.

The MIDFs areparticularrealizationsoftheNonlinearRescalingPrinciple[Po186],which

consistsoftransforminga constrainedoptimizationproblemintoan equivalentone and usingthe

ClassicalLagrangeanfortheequivalentproblemforboththeoreticalanalysisand numericalmethods.
Inthecaseof MIDFs, we transformboththeobjectivefunctionsand theconstraintsby monotone

transformations. The constraints transformation is parametfiz_ by a positive parameter. The MIDF,

which is a Classical Lagrangesn for the equivalent problem, has properties that make it substantially
different fi'ombothIDF as well as Classical Lagrangean for the initial problem.

Instead ofone tool (the centers), which controls the process in the IDF, the MIDF has three
tools: the center, the barrier parameter and the vector of Lagrange multipliers. Two extra tools

provide the MIDF with very important properties.
The barrier parameter not only allows to retain the convexity of the MIDFs when both the

objectivefunctionandtheconstraintsareconvex,italsoallowsto "convexify"theMIDFs inthecase

when theobjectivefunctionand/ortheconstraintsarenotconvexbutthesecondorderoptimality
conditionsaresatisfied.The barrierparameterisalsocrucialfortherateof convergenceof the

MeMs.
The othercriticalextratoolisthevectorol_Lagrangemultipliers.Itallowstoattachtothe

MIDFs nicelocalpropertiesofAugmented Lagrangeans[Ber82],[GolT89],[Hes69],[Man75],

['Pow69],[Rock74]and providesthem withnew importantfeatures.
One canconsiderMIDFs asInteriorAugmented Lagrangeans.However, inadditiontothe

nicelocalAugnented Lagrangeanproperties,theMIDFs possessimportantglobalproperties,which

manifestsitselfwhen thel.agrmgemultipliersarefixedand one changesthebarrierparameterand/or

thecentertoapproachthesolution.
What ismostimportant,theMIDFs aredefinedandkeepsmoothnessoftheorderoftheinitial

functionson theextensionofthefeasibleset.

The specialMIDFs propertiesallowsto developMCMs, which producetheprimal-dual

sequencesthatconvergeto theprimal-dualsolution,even when boththecenterand thebarrier
parameterarefixed.Moreover,undernondegeneracyassumptionstheprimaland dualsequences
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converge to the primaJ-dualsolutionwith linearrate.

So the m_n driverinMCMs isthe vectorof Lagrange multipliersratherthan the centeror

the barrierparameter.It_ows not only to stayas closeto the boundary as one wants, itmakes

po_ble for the proud mh_nizer to be even outside of the feasible set. At the same time, in constrast

to the IDF, the solution of the constrained optimization problem is always inside of the level set of
the MIDF.

So at the finalstage,the MCMs are closerto the multipliersmethods ratherthan to IPM.

As faru the_tialstageisconcerned,when thevectorof Lagrange multipliersisfixed,then one can

take _vantage of the global-self concordance [NesN94] properties of the IDF, which guarantee a

very reasonable convergence by following the central path, which one obtains by changing the ba.,Tier

par&'neter or the center.

The mm_c_ resJ_tion of the MCMs leads to the Newton MCM. In contrast to the IDF,

the MIDF Hessian not only exists on an extended feasible set but due to the MCMs convergence,

when both the center and the barrier par_sneter are fixed, the condition number of the MIDF Hessian

isstableand so the neighborhoods of the primalminimizers,where the Newton method is "well"

defined[Sm86].

Itconm1_,testo substant_reductionofthenumber ofNewton stepsper Lagrange multipliers

update from stepto step.Every update shrinksthe distanceto the primal-dualsolutionby a fixed

factor0 < y < I,which depends on theinputdataand thesizeoftheproblem. Itcan be made as small

as one wants even when both the "center"and the barrierparameter are fixed,but the parameter is

largeenough.

The paperisorganizedas follows.A,_erthe statementof the problem, we discussthe IDF's

propertiesand introducethe MIDFs. Then we establishthe basicMIDF'$ propertiesatthe primal-

dualsolutionand compare them with the correspondentIDF'sproperties.Then we prove the basic

theorem,which isthefoundationfortheMCMs and theirconvergence. We describethe MCMs and

analyzetheirconvergence.

The MIDFs have some common featureswithModified BarrierFunctions[Po192],but there

are fundamental differencesbetween them as well. We illustratethe differencesusing a few small

examples.

Then we describetheNewton MCM, which isa numericalrealizationof the MCM.

We conclude the paper by consideringdual problems,thatare based on MIDF, They have

some distinctivefeatures,which we willdiscussbriefly.
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I. Problem Formulation and Basic Assumptions. Let fo(X) and -ft(x), i = l,...,m be convex,

Cz -function in It" and there exists

x" = argmm{fo(x)/xe Ca} (1.1)

where fl = {x:f,(x) • O, i = l,...,m}.

We will assume that Slater condition holds, i.e.

3 x°:f_(x°)>0, t = 1,...,m (1.2)

So the Karush-Kuhn-Tucker's (K-K-Ts) optimality conditions hold true, i.e. there exists a vector

u' = (u:,...,=;)=o"suchthat
m

L/=(x "u ") = ff o(X ") - F., u/ff ,(x ")=01, f_(x')u," =0, i = l,...,m, (1.3)
l.l

am

where L(x,u) = fo(X) - _,ul_(x) is the Lagrange function for (1.1) and
t=l

f,(x) = Zn_l_(x), l - O,...,m, ue row-v_'to_. Let I ° "- tl:_(x °) --0}-- II,..._} is the active

constraintssetand r s n.

We consider the vector-_nctionf(x)= _(x),.../'(x)),the vector-functionof' active

constraints f(v)(x) = (fl(x),...L(x)) and the vector-_mctionof passiveconstraints/<..,,(x)=

(L.l(x),...J,(x)).

we_o_or_dertheir_amf'(x)=JO'(x)),/'c,>(x)=J_,_(x)).f'c..,>(x)=J_._,>(_)),

d_or_ _tr_ U= [diasu,] =,.= , U, =[diagu,]_. l with entriesu,, i= l, ..., m andHessimxs

s = I,..._
t= l,...,n

I = O, l,...,m,



of the objective fimction and constraints. The suffcient regularity condition

rankf(,)(x'):r, u,'>0,ieZ' (14)

together with the sufficient condition for the m/n/mum x' to be isolated

(L"=(x',u'):,:)z_.(:,:),_.>o v:,o :f(,)(x'):=o" (].5)

comprise the standard second order optimality condition, which we will assume in this paper.

We shall use the following assertion, which is a slight modi6cation of the Debreu theorem (see [Pol

92]).

As_ion I Let,,/

U = [_ u,],-l''

be a symmetric. ,,n matrix,B be an r x n matrix, and

R" -,R ', where u = (u_,...,u,) > 0" and let

(Ay, y) a k (y,y), k >0, VyBy-(Y"

Then there exists ko > 0 such that for any 0 < p < _. the following inequality

((,4 .kBrUB)x,x)ap(x,x), ¥xeR"

holds true whenever k • k0.

2. Interior Dbtu_ Function. Letye Int Q and a =re(Y), we consider the Relaxation Feasible Set

(RFS) onthelevel a • Q (eL) = O N (x :fo (x) • e_} and an interval T = ( _: • e_<_<a' =fo(X')}.

The Classical IDFs F( x, e_) and H (x, e_ ) " Q (_ ) x T--, It I are defined by formulas

f: -FCx,_,)- -mtn(_ -.foCx))- tn_(x) ; +/(x,_) -re(e, -foCx))-_• _.,/,,-_(x)
I-I g-l

Let us assume thatInt= -.. and tI = - for t < 0, the ClassicalInteriorCenter Methods
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(ICMs) consists of fmdin$ the "center" of' the RFS by solvin 8 the foilowin 8 unconstrained

optimization problem

= = arg;min{F(x, ec)/x e it"

and updating the objective function level a, i.e., replacing a by _ =f0(_). Due to

x-,aC_(et)-F(x, et)..- the new center _(ec)eintQ(_)c Q for any ec e T.

Moreover, if the IDF possess the self-concordance properties (see [NesN 94]) the central trajectory

{,_(oc), ec e T} has some very special features (see [Ren SS] and [Con 92]).

Starting at a point close to the central trajectory - "warm" start - for a particular cc • T and

using Newton step for solving the system

(x,a)= cy'

in x following by a "careful" cz update, one can guarantee that the new approximation will be again

a "warm" start and the gap between the current level a =f0 (x) and the optimal level a" =f(x') will

be reduced by a factor 0 < q, < 1, which is dependent only on the size of the problem.

However along with these nice properties the IDFs have their well known drawbacks. Neither

the IDFs F(x, a) and H (x, a) nor their derivatives exist at the solution. Both F (x, a) and H (x, cz)

grow infinitely when _(ez ) approaches the solution

All constraints contribute equally to IDFs and one can obtain the optimal Lagrange

multipliers only in the limit when _(e_ )--,x * . What is particularly important for nonlinear

co_ olximization is the fact that the condition number of the IDF Hessians vanishes when the

process approaches the solution. Let's consider this issue briefly, using F (x, cz). Keeping in mind the

boundness of the RFS G (a) one can guarantee that the unconstrained minimizer _e tint G(ec)

exists and



F' (_, t, ) =
_,-fo(_) ,.1

-(y, (2.1)

or

We define

f'o ('_)-:_ = -fo('_),., 7,,7,_r,(_)-o"

A
u_=_,(_ ) =(o_-fo(-_))(mr,(,_))", l =l,..._

(2.2)

(2.3)

and consider the vector of Lagrtmge multipliers _ • _(at ) = (u_l (_), l = l,...,m), then (2.2) can be

rewrittenas follows:

Also _,L (_) =(_ -fo (_)) m % I - L....m. so _;_,z(_)- ,, -/o(_).
t=l

Under the uniqueness assumptions (1.4) - (1.5) we have

lira_(=)=I,",
if, .., if,*

Let's consider the Hessian F"=(x, a ). We obtain

Further, for any i = 1,..., m , we have (

/

li.-L@)| =m.q
"_@) )

-f'o(x)L(x)-.,'a,(x)( ot-L@))

if(x)



Therefore

s

/%

al _ Iilt (f'ofl))r_ {/,ti)+ O:',(t))rf,(l)
<,-fo(t) ,-, ,-,

LetD(x) [d/agft(x)],'.i, U(1) [clingu,(_) " "#'^" ffi ]l.i,thenfortheHessianrffitx._)

we obtain

F"=:(_,_) =L":,(i,_)+(f,(_))rU(_)_"_(_)f'(_)+
I

• -fo(t) ,.i

Ia vizir of t ffii (el) -,,/", _)=_(i)-u ° we obtain

l=l

f'Cg)-.f'(x'), 0-. U'. DCg)-.D0t')

9



Therefore

+ += .)

where _0(_) =[ diag_,C(x)_._and

A
lira e'_(_) = lira u,((_)/,-_ (_(,,)) = +-- (2.4)

The mineigvaJ F#=(_, e_ ) is defined by the first two terms (2.3), therefore in view of(2.4)

due to the Assertion 1 with A = L "m (x', u_ and B = f'(,) (x') there exists tt > O

n,ineigv_r"= (_,_ ) = ),

At the same time due to (2.4) we have maxeigvai F//=(_,o_ ) -, m when cz- a'. Therefore the

condition _ of the Interior Distance Functions Hessians vanishes when _ approaches x" The

consequences of the ill -.conditioning is nmch more substantial in nonlinear optimization than in Linear

Pro_ In case of LP the tmn L"= (x, u ) in the expre_on for the IDF Hessian disappears and

by rescalin 8 one can practically eliminate the ill-conditioning, effect, at least, when the problem is not

degenerate.

In nonlinear optimization the situation is completely different and the ill conditioning was and

still is an important issue both in theory and practice. To eliminate the ill conditioning of the IDF we

will introduce the Modified Interior Distance Functions.

3. Modified Interior Distance Functions We consider a vector y • int f_ and A 0', x ) =

10



fo 09 "/o (x) > 0, then the Relaxation Feasible Set (RFS):

O(y)=(x:f,(x))o,1=t,...,m ; _(y,x)>O)

The problem (l. I) is equivalent to

x" =a_mm {fo(x) / xe Ofy)) (3.1)

It is easy to see that for any k > 0

Ofy) --(x:k-t[tn(k/,(x) + AO,,x)) - InA (y,x)] _ 0 : = I,..._; Aty, x)>0).

Therefore the problem (3.1) is equivalent to the following problem:

x" = argn_ { -In A (y,x) /x • oO')} (3.2)

Assuming In t = -,. for t ¢ 0 we define the MIDF F ( x, ),, u, k ):

R mx into x i[+ = x i[++ t -, il t as a Classical Lasrangean for the equivalent problem (3.2):

Ill II

FCx, y,u,k) =(=1 +t "t _,u_)inA(y,x) -k -t _,u_in(kf_(x) + A(y,x)) (3.3)
t=l I=l

The MIDF F (x, y, u. k) corresponds to the IDF F ( x, cc ). To define the MIDF, which corresponds

to H ( x, ¢z ), we first note that for any k > 0

O(y)=(x:t't[(l#_(x), a (y,x)) -t = a-_OJ,x)] _o, _= t,..._, a _y,x)>o )

Therefore the problem (l. l) is equivalent to

x" = argn_ { A't(y,x) /x e O(y)} (3.4)

Assuming t -t = - for t • 0 we define the MIDF H(x,y,u,k) : i_ x into x It. = x It.. t , E l

as a Classical Lasrangeen for the equivalent problem (3.4):

H(x,y,u,k) =(-1 ÷k -t Eu t) A "t(y,x) +k "t _ut(kft(x) + AfY, X)) -t
_"l t=l

(3.5)

11



The MIDF (3.5) corresponds to the P. Huard's [DF H (x, a). Both F (x, y, u, k) and H (Jr,y, u, k)

are Classical _geans for problems equivalent to (]. l), which we obtained by monotone

transformation both the objective function and the constraints.

F'mally, the MIDF Q (x,y, u,k) : R" x int Q x R+= x R++z -. Rz, which is defined by formula

M

Q(x,y,u,k) = (A (y,x)) "l *_"£" • 17 (kft(x) + A (y,x)) "_''''
i=1

corresponds to the potential function

Q(x.=) --(. -fo(x))-" f,-'(s).
[=1

So, we have F ( x. y, u, k) = in Q ( Jr,y, u, k ) and all basic facts about F ( x, y, u, k ) remain true for

Q ( _, y, u, k ), therefore we will not consider the MIDF Q ( x, y, u, k ) further in this paper.

There is a fundamental difference between the Classical and Modified Interior Distance

Functions. First we are going to show the difference at the local level - in the neighborhood of the

primal-dual solution. In the next section, we will consider the local MIDFs properties.

4. Local MIDFs Prooerties In contrast to the IDFs, the MIDFs are defined at the solution, they

do not grow infinitely when the primal approximation approaches the solution and under the fixed

optimal E,ag-ange n-azltiplie_ one can obtain the primal solution by solving one smooth unconstrained

optimization problem.

_.__z__].. For any k > 0 and any y • int fJ, the following relations are taking place.

Pl. F(x',y,u',k)=-lna(.v,x') i.e. fo(X')=fo(.V)-exp(-F(x',v,u',k))

and

H(x',y,u*,k) = a-10,,x ') i.e. fo(X') =fo(.V) -H'l(x*b', u',k)

The property P l follows immediately from the definition of MIDFs and the complementary

12



P2.

md

conditionsfortheK-K-T's pair(x',u'):

us'f,(x') = o, l- l,..._.

The t'ac_ that the MIDPs value at (x',u') coincides with the optimal objective function value

for the equivalent problem independently on both the center y e int _2 and barrier parameter k > 0

indicales that one can approach the solution by means other than those, which have been traditionally

used in the IPM developments.

For any k > 0 and any y e intQ, thefollowingrelationsare takingplace.

F', (x ",y,u ",k ) = A -I (.y,X ,) L ',(x ",u ") = 0

H _ (x ",y,u ",k) = a'Z(.v,x ")L _(x ",u") = 0

The proposition 2 immediately follows fi'om the definition of MIDFs and K-K-T's conditions.

If k> _ u_"the unconstrained minimizer of F( x,y, u; k) or H(x, y, u', k) inx is a solution of'the

convex programming problem (1.1), i.e., the following property is taking place.

Proposition 3

P3. x" =argrain{F(x,y,u',k)lx.elP} = _(H(x,..v,u',k)lxelP}

In other words, the knowledge of the optimal Lagrange multipliers allows us to solve the problem

(1. I) by solving one unconstrained optimization problem Therefore if F ( x. y. u, k ) is strongly

convex in x and we know a good approximation u for the vector u', then ._ = ._(y,u,k) =

&grKm { F(x,y,u,l¢) Ixe ]Lj ) is a good approxhmdon for x" while both the "center" y • int C_and

k > Z:u,are fixed.

If by using _ we can improve the approximation u, then it is possible to develop a method

where the convergence is due to the Lagrange multipliers update rather than due to the center or the

13



barrierparameterupdate.

Our goalisto developsuch a method, but firstwe willtryto understandunder what

conditionstheMIDFs F (_ y,u,k) andH (x,y, u,k )willbe stronglyconvex inx when bothy and

k > 0 are fixed.

The following proposition is the first step in this direction.

Proposition 4 • If' f_ (x) e C a , i = O, 1.... , m, then for any fixed y E int Q, k > 0 and any

KKT's pairs(x"u")thefollowingistrue:

P4 ',y,u',k) - (y,x ')[L "=(x ",u").,

and

A- O,,x') [L"=(x",. ') •

The proof is given in the Appendix AI. We are now ready to prove the first basic statement.

Theorem I . If f_ (x) e C"_, i = O, I,..., m, then for the convex programming problem (I. I) the

followingstatememsare true:

I)formy fixedy e int{2and k > _ u: thefunctionF (x,y,u,k ) isstronglyconvexinthe

neighbodxxxlx'ifoneofth¢functionsf0(x)or -f_(x),i= I,...,• isstronglyconvex orsufficient

regularityconditions(1.4)aretakingplaceand • = n,

2)ifnone of fo(x)and -f_(x),i _,I,...,r arestronglyconvexand • < n, butthesecond

ord_ optimalityconditions(1.4)-(1.5)arefulfilledthenthereexistko> 0 largeenough thatforany

14



fixed y • ira f2 and any fixed k >/_ (y, x" ) ko+ _ u," there exist such that p > 0 and M < + - that

the following is true •

PS.

Proof

a) mineigval F#(x "j,,u ',k) z A -I 0,,x ') p

b) maxeigval FH(x "j,,u ",k) _ A "!(y,x ")M

I) Using P4 for any v e R" we obtain

_'=(x ',y,u 'k)v,v) = a-_ ty, x ')[/,'=(x',u ')v,v),

,,-'o,,,,")ckc:'c.,c,,"):v;:'c.,c,,.)_.v)-c_.,c_"):,,;[,,;:c.,c,,.)v.v))3

A-_O,.x')[(z"=(x'..')v.v)•A-L0,,x')(k-E.,')((:c.)(x,))ru;f,c._Cx.)v,v)

• ,__0,,x')((Eu,')(_:u,"(f',(x"),v)_)-(Eu,'0",(s"),v)_]

Takingintoaccountidentity

J R m

(Eu,')(E,,,'(f',(x').v:)-(Y. " '",(/,(x').v))2
I=l t=l I=I

' I

_-I J-I

(4D

we obtain

(F"=(x'.y.u':)v.v)_.A't(.v,x')[(L"=(x'.u")

• A'_O,,x')(k-Eu:)(¢f'c._(x.))rU/f'c.>(x')v.v)]

(4.2)

So for a convex programming problem (1.1) the function F(x, y, u" k ) isconvex in x for any

ye imQandk> _.u_.
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If one of fo (x), -f_ (x), i = I,..., r are strongJy convex then due to u," > O, i = I.... ,r the

Classical Lagrangean L ( x, u" ) is strongly convex in the neighborhood ofx" while the matrix

(k - _ut') A'l (.V,X ") (/'t(O(x'))r U_f/f,)(x ") is non negative defined for any y E int Q and

k > E u,', therefore F ( x, y, u', k ) is strongly convex in the neighborhood of x'. fifo ( x ) and all

-f_ ( x ) are convex then L ( x, u" ) is convex in x, if addition (1.4) is satisfied and r -- n, then for any

y e ira f2 and k. z F. u: the matrix ( k- F.,u: ) A "t (y,x ")(f:(,)(x ° ))r U_._fo(x ' ) is positive defined

and again F ( x, y, u', k ) is strongly convex.

Note, due to f, (x) s C a , i = 0, 1,..., m the MIDF F ( x, y, u', k ) will remain strongly convex

in x for any u e R." close enough to u'.

2) Now let's consider the case when none of fo (x) and -f_ (x), i = 1,..., r are strongly

convex and • < n. If k> A (y,x ') k0 * ]_u:, then due to (4.2) we obtain

(F"=(x',y,u'_)v,v) z A-t 0,,x')([/., "=(x',u ")
(4.3)

ko :c,p')). u:f'c,,(x")iv,v), vv, r

Therffore if the second order optimality condition (1.4) - (1.5) are satisfied, then due to the Assertion

1 withA =L/_(x',u ") and B =f_o(x') for k0 > 0 large enougg any "center" y e int f2 and

any k>A fy,x')k o ÷Eu: there exists _t>0 :

(F#(x',y,u'_)v,v)_ A-IO,,x') _ (v,v), VV _ R a (4.4)

It is also clear that for a fixed y _ intfa and fixed k > A (y, x" ) ko +E u," there exists M <® :

(F#=(x ",y,u ',k)v,v) _ A-I (y,x ')M(v,v), ¥v e It" (4.5)
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So the condition number of the H_ F"= ( x" y, u'k ) is fixed at the K-K-T's pair (x', u" ) and due

to f, (x) c C: it remains to be true in the neighborhood of ( x', y" ) for any fixed "center" y e int_

and any fixed barrier parameter k > A 0', x" )/co +Y- u/

Remark 1 The second pan of the theorem 1 remain true even for nonconvex problem if the

second order optimality conditions are satisfied In other words the barrier parameter k not only

allows to retain the convexity in x of the MIDF F ( x, y, u, k ) but also provide convexification of the

F ( x, y, u, k ) in x in case when the Classical Lagrangean L ( x, u ) for the initial problem is not

convex in x E R+"

Remark 2. Theorem 1 holds true for the MIDF H ( x, y, u, k ) For any y E int Q and any fixed

k z 05 ko A (y, x') + Y- u/, there exists _t > 0 andM< .. that for ¥ ve it" the following is true:

a) s"=(x'0,,u'.t)v,v), A-2O,x ")([L"=(x"0,")

÷ ko (f_,>Cx ')) r U;ffc,)Cx')]v,v) , A-2 (y,x ') _(v, v),

b) • A (y,x') MCv,v)

5. Modified Center Method It follows from the Theorem 1 that to solve a constrained optimization

problem for which the second order optimality conditions are fulfille_ it is enough to find a minimizer

for a strongly conv_ and smooth inx function F(z, y, u" k ) with any fixed y _ int f2 as a "center"

and any fixed /r > ,_ (y, x') to+ Y- u,'. Due to the strong convexity of F(x,y, u, k) in xto find

an approximation to x' it is enough to find a minimizer

=  fy, u,k) = wgmin{ F(x,y,u,k)/x IP} (5.1)
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Fora given Lagrange multipliers vector u • 1_" close enough to u', when both y and k are fixed.

Moreover, as it turns out, having the _er _ one can find a better approximation _ for the

vector u" without changing bothy e int Q and k > O.

Let's consider it with more details. Assuming that the _er ._ exJsts,we obtain

(5.2)

where the components of the new vector of Lag'angean multipliers _ • _ (y, u, k) are defined by

formulas:

A A

u,(y,u,k)=u,A O_,x)(kf,(_)÷ _ (v,_))",#=I,..._,

AO,, x) then for the Lagrange multipliers update we have the following

_, (v,u,k) = u, _ (y,_) #,_ (£y,k), l=L...:n (5.3)

Formulas (5.3) are critical for our further considerations.

Fast, we have _ (u ',y,k) = u ' for any fixedy • int f2 and properly chosen k > O, i.e. u" is

a fixed point of the map u -, _ (u,y,k).

Second, we will show later that for the new vector _ the following estimation:

IO-*'lsck-lA(V,x ') lu-u'l (5.4)

holds,and c > 0 isindependentonye int_ andk> O,where Ix I = Is I,= max [xtl.
1 ,isa

Third, it turns out that the estimation (5.4) is taking Place not only for _ but for the minimizer
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._ as well i.e.

I]-x' I <ok "lA O',x') lU-U' I (5.5)

Inotherwords, Endinga minimizer_ and updating the vectoru e R..."

u ¢ R_" an operator •

c,.,'c,,.,u :

isequivalentto applyingto

Note thatC,., u" = u'. The operatorC,.j,isa contractiveone if

IC,.,u-u" l" IC,.t(u-u') l<lu-u" l

The contractibility of C_, is defined by

C°_'Cy.t " Yy, t •, c t-l ,,, _,x ')

The constant c > 0 depends on the input data and the size of a given problem and independent

on y and k. We will characterize the constant c > 0 in the course of proving the basic theorem.

So, for a given problem, the contractibility 0 < y,. t < 1 depends on the "center" y e int k_ and the

barrier parameter k > O.

The indepmdence c ony and k makes possible to reduce 7,.t > 0 to any apriod given level

by increasing k > 0 under the fixed y, or reducing A (y, x" ) under the fixed k or by changing both

the "center" y • int O and the barrier parameter k > 0 in the process of solution.

In particular, for any "center" y e int_ and any given 0 < y < 1, one can find such a barrier

parameter k > 0 that the operator Cy, t will shrink the distance between current approximation (x,u)

19
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and the primal dual solution ( x; u" ) by a factor 0 < y < I. Now we will describe the basic version

of the Modified Int_or Center Method. The convergence and rate of convergence will be considered

later.

We start withy _ int _, _) = e= = ( I ..... I) e R = and k > m. Let's assume that the couple

( x', u*) has been found already. Take k > _ u:, then the next approximation ( x"', u '-I) we find

by formulas:

x *.t = argrrdn { F(x,y,u *,k )/x • IP )

M s_'l MIe_'l• =ut'A O,,x*'1)d,-l(x*'l,y,k) i'-l,...,m (5.7)

First,letus consider conditionsfor the problem (I.I),under which the method (5.6) - (5.7)is

executable.

To simplifyour consideration,we assume

At. L(x)>--
x_R"

We also _ that the set ofopt. solutionsforthe problem (I.I)isnot empty and bounded, i.e.

A2. X" = Argmin {f0(x)/x • fl }i,0 isbounded.

Taking intoaccotugtheCorollary20 (see [FiacM68] p 94) and assumptionsAI -A2, we conclude

that the set 12, (y) = {x : k_(x) * A (y.x) z O, l=l..../m ; a (y,x) > 0 } is bounded for any

y F.iraC2and k > O.Also x -,8 {2t(y) =,,F(x,y,u ',k) -,m ,thereforeforany u' E R,..=,y ¢ intQ

and k > _ u,' the fianction F ( _ y, u; k ) is convex in x e Ok 0'), and the minimizer

x *'l = argn_m { F(x,y, u', k)/xe R" }
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exists.Therefore

and thevectoru ''te R,.,=if u" e L"

Hence,startingwitha vectoru°e L" one can guaranteethattheLagrangemultiplierswillremain

positiveup totheend oftheprocesswithoutany particularcareaboutit.

Beforediscussingtheconvergenceresultswe would liketo describebrieflythedualinterpretation

oftheMCM (5.6)-(5.7).

Let'sconsiderthedualfunction

h(u):inf{L(x,u)/xeR'}

and thedualproblem

h (u') ,, max {h (u) / u • R," } (5.9)

Along with the Classical Lagrangean L(x,u) for the initial problem, we will consider an approximation

for it

l.,(x,u,u',k) -(1 -k-lEut" + k-t Eu, )f0 (x) - Eu, f_(x)

Note that L (x, u', u',k ) -L (x,u'). We also consider an associated with L (x,u, u*,k ) approximation

forthedualfunction

h( _. u; k)-inf{L(x,u,u',k)/xe R"},

which isequaltothedualfunctionh (u) when u = u', i.e.,h ( u',u',k )= h (u")foranyk > 0.

Along withthedualproblem(5.9)we considerthefollowingconvexprogramming problem

max { Ia( u, u',k )/ue R." }

The functionI_( u,u',k ) is concaveinu e I_" and due to (5.8)L" (x ''t,u ''t, u',k ) = 0.
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Therefore L ( x ¢'_ , u ¢'t , u*, k ) = 11( u ¢'' , u', k ). For the subsradient of h ( u, u', k ) at u "_

have

we

Oh( u"', u'. k ) = k'lfo (x"') e. -f( x_'' ) (5.lo)

f(x) = (_ (x),...f, (x). Using formulas (5.7) for the Lagrange multipliers update, we obtain

/(x"')=- k" _O,,x"')u'(u"')"+k"fo(x"')e.-k"foO,)e.

where u' ( u"i ).l = ( ut, ( ui,.t )q,..., u,," ( u,f "!).l ).

So in view of(5.10) and (5.11) we obtain

Oh( u"_ , u', k) = -k "_a _y,x "_ ) u' (u"_) "_- k"/o 0_)*.

or

g/

Therefore

Oh(u"'. u'. k)+ k" A O,.x"')u'(u"')"+k"foO,)e.=o

'" = argmax{It(u.u",k)* k-I_u,'[A (y.x,.I)Inu,(u,')-'

+/o(y)u,(u,')-'-f0(Y)]/u•e'..}

(5.11)

(512)

The method (5.12) has some similaritieswith the prox-method with eutropy-likekernel (see

[PolTeb95]),which corresponds toMBF (see[Po192]),however, thereisa fundamental difference

between them aswell.Incontrasttotheprox-metNxi,which correspondstoMBF, the dualto MCM

isdealingnotwiththedualobjectivefimctionh (u),but with an approximation h (u,u',k )toh (u).

Thereforethe convergence resultsforMBF method cannot be appliedto (5.12).

We willobtainthe convergence resultsfor the method (5.12)as byproduct of the correspondent

resultsforMCM (5.6)- (5.7).

These resultswillfollowfi'omthe Basic Theorem, which we are going to prove inthe next section.
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6.._. The Basic Theorem establishes the contractibility properties of the operator

C,. _. We will start by characterizing the domain, where the operator C,., is defined and possesses

these properties. Let's consider a small enough number z > O, a fixed Yo eim f_ and a subset

f_, = {x :f(x) > _ • ) N { x : A (yo,X) > 0 ) of the RFS f_ (y). Note that due to A1 - A2 and the

Corollary 20 (see IF'tar.M68]) the set f_, is bounded. We will choose the "center" y fi'om _,. For any

y e 2, we have A (y, x') > 0. Along with _ > 0 we consider a couple ofsmaU numbers _ > 0 and

6 > 0 and a large enough ko > 0. In the course of proving the Basic Theorem it will become clear

what "small" and "large" mean.

To characterize the domain, where the operator C,. t is defined, we will consider two types

of sets.

The firsttYPe

D,(.) ={O,,u,k): u,• e, lu, -u," I <8 A -' (y,x ")k, k>ko,',O,.x') ",Eu,') , i = l,...,r

isrelatedto the activeconstraints.

The second type isassociatedwith the passiveconstraints.

D,(.) = ((y,u,k): 0 <u, < b A -t(y,x ")1¢, k_koA (y,x") + Eu_' },l =r+l,...,m

The set D (*) = Dl (*) x...x D, (*) x... x D= (.) is the domain, where the operator Cy., is

defined.

We will prove later that for any fixedy e Q, there exists ko > 0 that for any k z ko A(y,x') + _ u,"

the operator C_k is a contractive on D (.).

For a fixed yEQ, and a fixed k > k 0 A (.V,x') + _ us', the domain D (.) shrinks (see Fig. 1) to

Uy.t = U_t x ... x U_', x ... x U,:'_.

We are particularly interested in the set U,.. t, because as soon as both the "center" y and the
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barrier parameter k are fixed, the set Uy.k is the only feasible set for the Lagrange multipliers,

moreover if Cy. j is a contractive operator then u • Uy._ - _ e Uy._.

Before we mm to the Basic Theorem, let's briefly describe the main idea of the proof In

view of A1-A2 for any ueIC." ,y e _, and k >_ u,,there exists the MIDF's minimizer _ = _ (y, u, k)

and

where

(6.1)

A

u,=u,A 0,,_)d,_(_,y,k),l=1,...,r, (6.2)

and

Jm

k(_,),,,,,k)= E
tmr*l

u,A 0,._)d," (_.y,k)f',(_)

11

^ k-lg(x,y,u,k)-- Eu,(-1÷,_0,,_)d,-1(_,y,k))f0f_)

/%

Considering(6.1)and (6.2) asa systemof equationsfor_ and u(,),itiseasytoverify

that._=x'and _(,)= u(_.)satisfythesystemforany ye f2,,k>F,u:, and u =u',._

/%

Moreover forany triple(y,u,k) e D (.).thesystem(6.I),(6.2)canbe solvedfor_ and u(,)

^ kHavingthesolution_ = _(y, u,k) and = _(,)"u(oO,,u, ) one canfindtheJacobians

_; (.) =J.(_O,,u.k)) =d _,_. (.) =J.(_t,_O,,u,k))andes_-_te

i_._(y.u'.k) i and I_(,).(y.u'.k)l

It turns out that under second order optimality condition, there is such ko > 0 that for any

y • f"J, and k a koA(y,x') + _ u,' the follow/rig estimation

^/ (y,u",k)l)sc (6.3)max {I_,_(y,u',_01, Iu(,),
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takes place and ¢ > 0 is independent on y and/_

Due to the continuity _,/(.)

neighborhood of u"

In view of x'

I_-x'l and I_-u

exists

^/
and u(,), (,) in u the estimation (6.3) is taking place in the

=_(y,u',k) and u" =_(y,u',k) and using (6.3)one can estimate

'Ithroughlu-u'l

The independence¢ > 0 on y and k makes possibletoprovethatforany fixedy• _, there

ko> 0 suchthatforany k z koA(y,x')+ _ u,"theoperatorCy.,isa contractiveone, i.e.

0 < yy., < 1, therefore u e Uy.t - Cy.t u = D e Uy.,.

In the course of proving the Basic Theorem we will assume

rnin {f_(x') / I =r÷l,...,m) = o > O, rain( A (y,x')lye Q,) = %>0,0 p'q be thep × q

zero matrix, I" be the • x • identity matrix, S(a, e ) = (xe R=" Ix - a I ,c e }. We remind that

d_(x,y,k) = (kft(x) ÷ A (y,x))and introduce three diagonal matrices d(x, y, k) =

[di_ d, Cx,y,k) _._, tic,_(x,y,k) = [di_ d, Cx,y,k)L,,dc,.,_ (x,y,k) = [ aliasd, (x,y,k) 17.,.,

Th_r_ 2

exists

I.IfAI - A2 aretakingplace,thenforany y • t'2,,u ¢ L" and k > Y.u,"there

=_(v,u,k)= argnfm(F(x,y,u,k) /x eIP }"F_(fl,y,u,k)=0".

2.Iff_(x )• C 2 , I=O,...,mandstandardsecondord_ optimalityconditions(1.4)-

(1.5) are taking place then:

a) for any triple (y. u. k ) • D (.) the minimizer ,_ = _ (y.u,k) exists,

F/_(_,y,u,k)= 0aand forthepair_ and _ ffi_(y,u,k) thefollowingestimate

max (I_ -x' I , I_ -u' I} s ¢k-1A (.V,X')Iu - u" I (6.4)

holdsand c > 0 isindependentony and k.
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b) for any fixed y • 2, and k > koA(y.x') + r_u_',the MIDF

strongly convex in the neighborhood of _ and for any u e

A A
tt>O and M<.. •

mineigval F_ >A (y,x') ^-I

II -I *
maxeigval F'_' (:t,y,u,k) < A (y,x )/_l

F(x,y. u. k) is

Uy. _ there exists

(6.5)

(6.6)

Proof I) In view of the assumptions AI -A2 and the Corollary20 (see[FiacM68] p94) the set

fl_(y) = {x " kf_( x ) + A (y,x ) a O , l ffil,...,m ; A (y,x ) > O } is bounded for any y e f_ , and k >

O. Also x e a f_, (y) - F ( x. y. u', k ) - 0. , therefore for any y • Q ,, u e L" and k > E u, the

function F( x, y, u, k ) is convex in x • f2_ (y) and _ = _(y,u,k) is an unconstrained minimizer

of F (x,y, u,k ), i.e.F/x(_,y,u,k) = 0_.

• ,)2)For technicalreasons,we introducea vector t = (tp...J=))tt = k -IA (y,x ) (ut - u_

insteadofthevectorofLagrange multipliersu,then u = u" -t = O'. Such transformationtranslates

theneighborhood of u" intothe neighborhood $(o, 8 ) = {t' [tt I '_8 , i= I,...,m} of the origin

of dual space.

We willsplitthe vector _ on two parts,which correspond to theactiveand passiveconstraints.

Let _(,) ffi (_, i = l,...,r) is a vector of Lagrange multiplier, which corresponds to the active

constraints, while _(,_,.9 - _C--,)(:t,y,t,k) = (_,(x,y,t,k), iffir*l,...,m) isthevectorof Lagrange

multipliers, which corresponds to the passive contraints.

Wehave u,(x,y,t,k)"IcA "l^ (.F,x')t, A(y;x)dt-l(x,y,k) l=r÷l,...,m, _ --(_(,),̂uf=_,))and

forthevectorfunctionh (x,y, u,k ),g (x,y, u,k )we willhave thefollowingreplacement.
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I

h(x,y,t,k) "
I=r*l

^ r_,(x,y,t,k) _ (x))r =Cuc._,)Cx,y,t,k)_..,)Cx)) ,

t:_ u:)[-I • A(y,x)dt't(x,y,k)]t_o(X))rg(x.y,t,k)=k"_ (kttA'_(y,x")÷

So foranyk > 0,smallenough eo> 0 and ye D, thevectorfi.mctionsb (x,y,t,k )and g (x,y,t,k )

aresmoothinx • S (x',eo)and t• S (0,8).Then we have h (x",y,0,k)= 0n ,g (x ",y,O,k) = (Y',

h/(x,,y,O,k) • _ , ._ ,=o", ,g_Cx,y,o,k)= -zL (.v,x).f'o"Cx')£Cx')aL_,oh_,,Cx',y,O,k)=0""

and g_0(x ',y, 0,k) = 0_. On SCx",eo) x SCuc__.eo)x Q, x $(0,8 ) x (0, +oo)weconsider the

map #?(x,_¢,>,y,t,k)"R z''''='t--R'" de_qned as follows:

®(x._,.y.t.k)=(for (x) - E O,:',"(x)- h(x.y.t.k) +g(x.y.t.k);

k-I A(y,x') [ (kA-_(y,x ')t, ÷ u,') A(y,X) dt-_(x,y,k) - _, ], 1=1,...,r )

Taking into account (1.3) and R( x" y, 0, k ) = g( x" y, 0, k ) = 0_ we obtain

)(x',u¢;),y,O,k)-0"" for any k>0 andye Q,.

L=®,_,,• ®'._,o,.,_:,y.o,k),L'='- z.'='O,",,,"),:'=:'C_')._,=_,C_").

u: =[ diag,,,'_._, ,,¢_)=(u:, I=1,...,r).
l (,

Inviewofh_(x',y,O,k)=O"',h_oCx',y,O,k)=O"',g.(x,y,O,k)

=- A-'O,,_')f'o"O_')_(x'), g" (_',y,O,k)=0"" weob_

L="- A-,_,_')/'o'/o®c.,,)• ®'._,,cx'.,,;,o,y,k)= - u;//,, ,, ]f (r)

-/r-t_,(y,x")I"

Now we will prove the nondegeneracy of the matrix _)_,.t) for anyy E int f2, and any

k > koA(y,x")+ E u,'.Letus considerw = (z,v )• R"', thenthesystem0¢,._w = 0"'"canbe

27



rewritten as follows:

(6.7)

U;_) z - t-i _ (y,x ') v = 0'

We find v from (6.8) and substitute in (6.7). Taking into account the K=K='r's condition

f'o -- u'( ,)f '¢,) we obtain

/T * /T *T * _./z.="- +A-'O_,x') [k/c,)u; _) - (I"c,)uc,)"c,;c,))l" =o"

i.e.

. -I It( z(L=-.-). A Cv,_') u;_, ,_,.)-(.(;,_,.)=] =o

The inequality

implies

=(L",.-)

k _ko_(y,x') + E u,"

//(L=_,-)+A-'Cv,_')[k(u;.¢,.,-_,.) - (,,;,_,-)' ]

• (L="-,-)+A-'Cv,_')[koAC_,_')(U;g,"_,.)

+ (_ =,')(U;_) =_). ) - (.,;)_)=)_]

(6.8)

+koO"(5,u(:_).. -) +A-'cv,.')[(=.,')(_.,' g,-)')- (_.,'_..))= ]

Due to identity (4.1) we obudn (_ut')(Eu ,' (/_ ,z) 2) - (Eu,' (j_t ,z)) 2 • 0. Therefore taking into

_ _,_,h_ 0- ((L="÷ko/'_,_)Uc;_))_,-) • ),(_,-),),>o,s, _=o-,h_c,

from (6.7) we obtainf'r(,) v = 0, so due to (1.4) we have v = 0, i.e. O(,. t) w = 0_" - w = 0_', i.e.

_(,. k) is a nonsingular matrix.

Let k_ be large enough. We consider a compact
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g={_},,tO,,k):ye Q,,k_ zk_k0A(y,x')_Eu ,}

, = _ l^ (x ",uf;),y,O,k) isnonsingular,Since @(x ,Ofr),Y,O,k ) = 0"", the maa_ ¢'y.t z,_

f_(x) • C 2, I = 1, ...,m and K is compact, it follows from the second implicit function theorem

(see [Ber82]p.12) that there is a small enough 8 > 0 that in the neighborhood

S(K, 6) - {(y,t,k)"It,I < 8,

i = l,...,m,y ¢ fi_,k • [k0 d,(y,x")+ _ ut-,kl]}ofthecompactKthereexistuniquecontinuously

differentiablevector-functionsx( .) = xO',t,k)= (xI(y,t,k),...,x(y,t,k)) and

A _X•u_,)(.)--Bc,)(y,t,k)= (ux(y,t,k),...,_,fy,t,k))such thatx(y,0,k) - ,u6c,)(y,0,k) - uc;)

and for any triple (y, t, k)¢ S(K_ 8) there is eo > 0 that

max {Ix(y,t,k)-x'l, 10c,>(y,tdr) - uc_I} • eo

The identity

A A
@(xO,,t,k),%>fy, t,k),y,t,k) - @(x(.),%>(.),.) • o'"

(y, I. k)eS(g. 8).holdstrueforall

So we obtain

• A ty,x(.))E_'(x(.),y,u,k) • o"

(6.9)

(6.zo)

(6.11)

which is the necessary optimality condition for the vector x (.) to be a minimizer of the function

F ( x, y, u, k ) in x under the fixed (y, u, k ). Also fi'om (6.10) we obtained the identities

e

_(.) • (kA't (y,x')t_÷ u_ ) A (y,x(.))dt"l(x(.),y,k) i= l,...,rfor the Lagrangemultipliers

thatcorrespondstotheactivecontraints.

Allermultiplyingbothsidesby k"Afy,x"),itcanbe rewrittenasfollows:

( t, + k -1 & (y,x ")u,') A (y,x( , ) ) dtq (x( . ),y,k ) - k-_ A (y,x ")u_( . ) =0 r= l,...,r (6.I2)
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TheLagraagemultipliers that correspond to the passive constraints, we can rewrite in the following

way:

_,(x('),*)"_(*)=kA-l(y,x')t, AO, x(*))d-t(x(*),y,k) i=r+l,...,m (6.13)

A A A A

(u,(.),I= =let u¢..,)(.)= r+l,...,m_d _(.) (UCr_C.),Uc._,_(.))

To prove the su_cient optimality condition for the vector x (.) to be a minimizer of the function

F ( x, y, u. k ) in x under fixed (y, u, k ) we will show later that the function F ( x. y, u, k ) is

strongly convex in the neighborhood of x (.) for any (y, u, k ) e D (.). But first of all we will

ascertain the estimation (6.4).

To this end let us first prove that for small enough 6 > Oand large enough ko there exists p > 0 such

I (®'_,(x(.).Oco(.)..))-' I, p

that the inequality

holds true for all ( t, y, k) ¢ S(K: 8 ).

We consider the matrix

o_.._ - o'_o,(x'.uc:,0.y...) - [L="-

(6.14)

The matrix _o,-} is nonsingular for anyy e G,. In fact, for a vector w = (7., v ) • R""" the system

_(y,. )W = 0 _"

can be rewritten in the following way

(6.15)

(6.t6)

/!L.:.-,,-'o,,, .-.ri,L,,-o.

-u;r,,,,.o"
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Becauseofu*<,,>iY' fi'om(6.16)we obtain f/c,)z=0 r , i.e.(._t,z) =0,1=l,...,r,

P

( Z u/_, z) = (f_0,z)= 0. Multiplying(615) by z we obtain
t=l

<L="

i.e.

therefore

(6.17)

(L="z,z) =0, vz: )z =o'

so due to (1.5) we have z = 0" then fi'om (6.14) one obtainsf'r_,> v = 0", which due to (1.4) implies

v=(Y.

Therefore,_<,,._w = 0"" impliesw = 0"" forany y e 13, i.e.the matrix_<,..> isnonsingular,so

thereexistsa constantp > 0 independentofk and y • f_, such that

-I
100,.._ I _ Po.

Hence, for the Gram matrix G(y,.) @r= 0,,-) @0,,.'} we have mineigval Gcy ' ._ = lao > O. Then there

exists a large enough ko > 0 such that for any y • fJ, and k z ko A(y,x') + E u7 ie k "l A(y.x') <

r
ko"_we obtain for the Gram matrix GO,.t ) = O0,.t ) O0,.t ) the inequality

mineigval G(,. k) z _ I_o

and I_e> 0 is independent of y • f_, and k • [ k o A(y,x') + _ u,', k t ] Therefore ¢_o, _ is not only

nonsingular, but there exists a constant p > 0 independent of y e Q, and k a ko A(y,x') + _ u," such

that

I @o,,k)-tI " I O_'t,,...,,,(xO,,o,k) ; _,(.v,O,t)) I '_ p (6.1s)

The last incqua_ implies (6.14) if 8 > 0 is small enough. Now we will prove estimation (6.4). First

let us estimate the norm I Oc=-,) (') I

Due to (6.9) for any small enough 8 > 0 there exists such small enough %> 0 that for

v(y,t,k)ES(K, 8)
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max{Ifo(x(y,t,k))-fo(x(y,0,k))I,If,(x(.v,t,t))-f,(x(y,0,t))Il-v+X,...,m}_%

Therefore,inview off_(x")> o > 0 forthepassiveconstra/nts,we obtain

ft(x(,v,t,k)) z o > 0 l=r÷1,....mandfortheLagrangemultipliers,thatcorrespondtothepassive
2

constraintswe have

u,(y,t,k)-u,(foO,)-fo(xO,,t,k))).(kf,(x(.v,t,k))*fo(.v)-fo(x(.v,t,t)))-'

=u,(fo(.v)-fo(_')+fo(X')-fofX0,,t,k))[kf,(x')-A,_fx')-.f,Cx(.v,t,k)))

.fo(.v)-fo(x')-(fo(x(y,t.t)-fo(X'))]_t

u,_) -foCx') ,-eo)CAf,Cx') - (t, l )eo'fo_) -foCx'))-_'

2u, ') ') k- l ., ,
___._(foLV)_fo(X ,eo)_( x _ (k,l)eo÷ t (fo(.V)_fo(X)))-l.

o k(k + l)-t
Hence, for small enough eo < _- we obtain

u,(.).u,(y,t,k)s
2u,(fo(.V)-fo(x'))

O

k[o -_ +(fo(.v)-fo(X'))k-']

4Ut(foOP) -fo(X'))
'_ , i =r÷l,...,m

ko

So we have

Iu(._,)(y.t.t) - u('..,_I '_4 t-' _o0') -_(x')) I uc..,) - uc.-,)I
0

Now we will show that the estimation (6.4) holds for _(y,t,k) and _¢,)(v.t,k)_._ =

(_t (y,t,k), l = 1,.._ r). To this end we differentiate the identities (6.11) and (6.12) with respect

/
tot._ x/(.) =.v,(x(.)) = (,_:,( .)../= l,...,n), Go,>.,(.)-.v,(uc,)(.))- (_,(-), J= l....,,.)a_

theJacobiansofthevectorfunctionsx(o) and i_(,>(.).Also L(x(o), _,(o)) fifo(X(.))-

_,(.)ft(x(.))and letJt(h(x(.),.)) and J,(,g(x(.),.))aretheJacobiansof thevector
t,,l
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functions h(x(.), ") and g(x(.), .). Then differentiating (6.11) with respect to t we obtain:

Let

"_=_(x(.).Uc,_C.))x,_C.) -̂ _)Cx( .))r Uc,).,(,,I.)

-,Y,ChCxC.),.))' :,CgCxC').') • o
n

L i c:,l
#

y(xC.),y,t.k) =[ _(t, ÷k-' u, a 0,:'))]; ×

(6.19)

[ -_c_c_(.),y,k)_(,,(x(.)) -k_cy,xc.))d(;_CxC.),y,k)g)C_("))

* a O,,xC.)).d(,_CxC.),y.k)Fc,)Cx(.))].

then differentiating (6.12) with respect to t we obtain

'_(x(.).y.t,k)x/(.) - k-' a (y.x')_,x,(.) •

- [a (y,x(.)) .,no-,_(x(.).y,k) ;o'.'-'1, s(x(.),.)

(6.20)

Now we consider Jacobiam Jt(h(x(.), .)) and Jt(g(x(°), .)) in more detail.

Recall that

a (x(y.t,k).y.t.k) -h(x(.)..) - _, _,(x(.),.)Cf,', Cx(.)))t=Cuc._,)(x(').')_.-,)(x(')))r
t_r*l

Therefore
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V,ChCx(.)..))=h'.CxC.)..)x/(') ",hi(x(.)..)

" , ,,r _. ,_=Cx(.).')]x/C= ! E _,(xC.),.)_'Cx(.)) ,,c._,)txC'))) ") '
tsr*l

/7'f c._,_(x(.))ro--,.',kA'_O',x')_X(y,x(.))aC_,__,_(xC.),y,k)]=

N(x(.),.)x/(.) ".q(x(.), .)

A •

Takingintoaccountx(y,O,k)= x ",u_(x",y,O,k)= ut = O, I = r÷ I,...,m,

_/ (x(y,O,k),y,O,k)= 00'-')'mwe obtainN(x',y,O,k)--0"" and q(x',y,O,k)--Cm-,).z

,_ , kac;__._C_,,y,k)]fc._,_Cx')[o--'..

Now letus considertheIacobian

.v,c - g,,'cxc.),.),,c.),

=g='(x(.),.)x/C.)+A-_(y,x')F.rCx(.))[cuask/,CxC.))(k/_(.))+ A-'(y,x(.))]_'

= g_CxC*),*)x/(*) * p(x(*),*)

Forthelacobiang',(x(,),*)we obtain

_.'(x(.),.) =k-_[ _ (kt,a_(y, xC.)) • u,') (-i • A(y,x(.))a/_(x(.),y,k)) ]X'(x(.))
t-I

, k-_y'r(x(.)) [ _: (kt, a-_(y,x ') ÷u,') _ (-_(x(.))d,'_(x(.),y,k)
l-I

-a (y,x(.))d,'2(x(.),y,k)(k_Cx(.))-_Cx(.)))]=¢_(x(.),.).

T akin8 into account (1.3) and x (y, 0, k ) = x*, [ diag (k t l A - 1(,y, x" ) ÷ u/) _t/, -o = U_',
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B

we obtain

G(x ",y,o,k) = - _ _ (y,x')f'orCx')fo(x'),

p(x',o,y,k) =A-_(y,x')[o", F_.r.,_[ diask/_(x')d,-_(x',y,k)]_'._]

Therefore,

J,(g(x ",y,o,k)) - A-_(y,x')for(x')£(x')x/(y,o,t) ÷p(x ",o,y,t)

T(x',y,o,k)=-U/_(x'),S(x',y,o,k)--[;";o'.-"]

r
q(x',y,o,k)=t-_[o"";fi--,)(x')dc_,_-,)(x''y'k)]

We recall that

®'__.(_('). _c,_('),")

n

r

n

L="(x(.), _c._('))÷o(x(.),.) • N(x(.),.)T(x(.),.)

¥

-k-IA(y,x )I'

Then combining (6.19) and (6.20) we obtain

m

n _/(.) =( ®'_(.))-_ n
r

m

sCx( .),.)

(6.21)
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Now we considerthe system (6.21)fort= 0= Taking intoaccount

" L_(x' '),G(x0,,0,k),y,0,k)L=(x(y.O,k),uc,_(y,O,k)= ,u

- - (fo_) -L(, '))-'/'orfX")_(x '), _V(xO_,O,k).y.O.k)- o-',

v(x0,,o,k);y,O,k)= -U:_(x'),q(x(.v,O,k);y,o,k)=q(x',y,o,k)

= k -_[o".';.:'_ .,_Cx') ac,_.,_Cx",y,k) ], pCxb,, O,k),y.O,k)--pfx ',y,o,k) =

[ o','; _r_,_(x ')[ dias/,(x')d, _ (x ",y,k)_.,1,

S(x(y,O,k),y,O,k)= S(x',y,O,k)=(-!";0".=-")

we obtain the followingsystem

_c,x,O,,O,k) S(x ,y, o,t )

Therefore

-I
max{ I =/(y,O,k) I, I _,>,,(y,O,k) I) • I ec,.k>l IR(a*,y,O,k)l.

Taking into account min {&(y,x')/y ,E Q ,} - % > O,

I[ diag _(=') .,.k" ,',O,,x')) -1 _,., I ¢ o -I ,

I [ dias _(x')_(x'). t -_ A (y,x '))-_ _,.l I '_ 1,

one obtains

(6.22)

(6.23)
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Iq(x'.t.O.k) l_o "t /r .) - r x') .Ifc,_,)(x I. Ip(x'.y.O.k) I _ _onlF(,-.)( I

I $(x'.O.y.k) I s I and I R(x'.y.O.k) I s a "_ _r . - r .)If(..,)(x ) I * _o' IF(._,)(x I ÷ 1.

In view of(6.18) and (6.23)we have

max{Ix/(y,O,k) l,l_(,_,(y,O,k)l)sp(l*a -I''_r . . - r .) =,j(._,)(x ) I ÷ _o! I F(._,)(x I ) Co

So there exists a small enough 8 > 0 such that for any (y, t, k ) • S (Arc,& ) the inequality

I(_,_,(x 0,, =t,k), i_c,)O,,et, t) ;y, ett,k))-_R(x(y, e,t,k) ;y, =t,t) I

_:2p(l+o -i /rI/c._,)(x') I * :ol I Fc..,)(x ") I) =%

(6.24)

holds true for any 0 < cc ,: 1. Also we have

xO,,t,k)-xO,,O,k) .

_,O,,t,k) _,0,,o,tl

fro /-t4_ _o, (x(y,_t,k),_(,)(y,_t,k),y,_t,k) "R(x(Y,_t,k) ;Y,_t,k) [t]d_ .

From (6.24)and (6.25)we obtain

max{ I x/O,,t,k) - x " I, I f(,)(y,t,k) - u(;) I ) • CoIt I "Cok'l A (y,x ") lu -u' I.
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Let_(y,u,k),,xO,,k'_A(y,x")(u-u"),k),u(.v,u,k)'. (uc,)O,,k-'A (.V,X")(u-u "),k),

_(..,,)(.y,k'l&(.y,x')(u -u'),k)) and c " max{c0,4o "! ), then

max { ^ ° ^ * °Ix(.y,u,k)-x I,lu(y,u,k)-u I),:ck'lA(.y,x')lu-u I

So we ascertained the estimation (6.4). Also ._(.V,u ",k) = x' and _(y,u ',k) = u 'foLlows from

A
(6.4) for any triple (y, u; k ) e D (o) i.e. u" is the fixed point of'the mapping u -, u(y,u,k).

3) Now we will prove that F( x, y, u, k ) is strongly convex in a neighborhood of

_=_(j,,u,k) for any (y,u,k)eD(.).

Using theformulaforF_ (_,y,u,k) (seeAppenc_ A2 )_Jd ta]_ intoaccountthe estimation(6.4)

we obtainfora smallenough 8 and for any triple(y, u,k )• D (.) that

//

. (kA_._ '))-'(_ (u,"- ,,))f_(_')/0(_")* k" (_.(_,"- ,,,))/o'(X")].

For any triple (3;, u, k ) • D (.) we have k ,_ko ,_ (y,x") + F. u,', and

k'l ]ul - ut" I s 8 A -l (y,X "),t - l,...,m .Keeping in n'dnd n_n { & (y, x') l y e f2,} = _o >0 for

any veR" weobtain

(p="(_.x,.k)_._)• A-,(y.,.)[((L="(,.,,.). ko.:c;,,; &(-'))_. _)

• _-'cv._')cc(_,,')Ac;,u;_(,,') "-/,_._(_")uj:,c:_(,"))_._)
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-(ta (y.x .))-I :Clu,' - u, I¢.:'o(X").v)2 - k "!E lu,"- u, I_(x ")v,v)

z _'l(y.x')[((/._(x',u') ÷ trto/c._(x ")u/_ (x '))v,v)

- bm  o(X'),v) • ')v,v))l.

So due to Assertion 1, there exists a ko large enough such that

/I
(F'_'(_,y,u,k)v,v) z A't(y,x*)[l_(v,v) - 8 %lm(_ol_o(X'),v) 2 ÷ _o/(X')V,v))].

So for small enough 8 > 0 and any triple (y, u, k ) e D (.) there exists 0 < _ < #:

F_ (_.y.u.t)v.v), A-_0,,x ')_(v,v). Vv_r

i.e, for v (y, u, k)eD(.),Wehave

mineigval F_ (Sl,y,u,k) z A-t(.V,X')_

To completetheproofwe notethatforany triple(y,u,k ) E D (.)we have

k "1EMt ¢ (Elt,*)(_'o A (y,x *) ÷ EMt*) -1 ÷ 8 m A'! (Y,X *) '_ (ELM,*) (_ 0 _o ÷ Eut *)'1 + 8 m'fol •

Therefore if 0 < _ < then k -t E u t < 1. So for small enough 6 > 0 the
m(z ÷(Eu,')(_o) "_)

function F ( x, y, u, k ) is convex in x e t2k (.v) for any (y, u, k ) e D (.). Hence the vector

= _(y,u,k) is a unique minimum of the function F (x, y, u, k ) in 12kf.v) and F/.(_,y,u,k) = O.

Due to the definition of F ( x, y, u, k) we obtain _ = ar_ {F(x,y, u,k) [ x e R_').

UKmg tha fonm.da for F_(_,y,u,k)one can r_d _,_'suchtl_ for any triple (y, u, k) e D (.)

the estimate (6.6) is takins place.

We completed the proof of the basic theorem.

Remark 3. All statements of Theorem 2 remain true for the MIDF H ( x, y, u, k ) To prove it

we consider instead of OCx, i)¢,),y,t,k) the mapping 4_s(x,_¢,_,y,t,k)" it 2"'''-'i " It" ""
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ddmed by

r

%(x,_,.y,t,k) -(for(X) - E _,/'_(x) - h(x,y.t,k) • g(x,y,t,k);
t,,l

k-t A (y,x') [(kA-i(y,X')t, +U, )A2(y,x)dt-2(x,y,k) - _,],i = l,...,r)

wh_e

hfx.y.t.k)- _: _,(x.y.t.k)_fx)) r,
t=r_l

g(x.y.t.k)- k"_ _. (kt, a-_(y.x ') +u:) [ - t ; A=O,.x)d,-_(x.y.k)]_(fo(x))r
t=l

and

_t(x,y,t,k) - kA-=(X,y °) ft A =_,X) dt-=(x,y,k) , t = r÷ 1,...,m

The MIDFs and MBFs [ see(Pol 92)] have some common features, however, there are essential

differences between them as well.

We will consider few small examples to illustrate some of the differences.

7. _. Let us comider a convex programming problem

x" =argmin{fo(X) =x lf(x) = - x_ ,xzo}=o (7.1)

The corresponding Classical Lagrangian is L ( x, u ) = x - u( - x= + x ) , then L_ ( x ",u ") =

I ÷ 2u'x' -u' =0, i.e. u' = I. The feasible set fl ={x: -x= +xz0)=[0, I ].Now
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we fixed0 < y < I, then the following problem

x" - avlmin { - ln(y -x) Ik'l[ In(k(- x 2 +x) +y - x) - h(y -x)] :, 0,y> x }

is equivalent to (7.1) and the corresponding MIDF is:

F(x,y,u,k) • - la(y - x) - k'lu[h(k( - x 2 +x), y - x) - ln(y - x)]

=(- 1 +uk-t)ln(y-x) -k-luln(k(-x 2 ÷ x) +(y-x))

So F(x,y,u °,k) = ( - 1 ÷ k -l)ln(y - x) - k-lln( - kx 2 ÷ (k - 1 )x , y) and

F_(x,y, u ",k) = ( 1 - k -I ) (y _ x)-I ÷ (2x - I ÷ k -I ) ( _ kx 2 ÷ kx * y - x) "l , therefore

F_ (x', y, u; k) = 0. Let us consider F'= (x, y, u: k). We obtain F'= (r, y, u" k) =

(1 -k-l)(.y-x)"2+(2kx 2 + 2(y-x) .4x-2kx +(k- 1)ak-l)(- kx 2 :,.(k-I )x +y)-2.

ThereforeF_(x ",y,u",k)- (2y + k - I)y -2and takingy- 'A andk - ½ we obtain

F"= (x", sA, u', ½ )- - 16,i.e.theClassicalLalgangianfortheequivalentproblemisstrongly

concaveatthesolution,whileproblem(I.7)isconvexand theClassicalLagrangianL (x,u')=: for

problem(I.7)isstronglyconvexatthesolutionx"- 0 - &groinL (x,u').

11 1 ._) 1Moreover, F(x, ,u*, )=In( _x)_21n(_x2_x÷ I +21n2, so forx=_.-e

we obtain F(._I _ e 1,u,,_I8 2 ) -lne -2In(-( 18 _ e)a _(18 -e) + 1) ¢. 21,,2 --

s _e + ),2tn2.r(t).Then+o ., :.t). ..
In e -21n(_e - . = -

This example shows thai without the condition k > E u+"Theorem 1 and Proposition 3 are invalid

even for the convex prolp'ammi_ problem.

In case of Modified Barrier Function the situation is different. For the MBF which corresponds to

(7.1)we obtainF(x,u,k) = x - k'luln(k(-x 2 + :t)+ I)thin F(x ",u",k)=fo(X")= x " = 0

F_(x",u",k)-O and F_(x ",u",k)> O,x" - m_a_n{F(x,u",k)[x eR l}forany*>0i.e.
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the Proposition and the first part of Theorem l remain true in the case of the MBF for any k > 0 if

the problem is convex.

As for the MIDF F (x, y, u, k ) then the Proposition 3 and the first part of Theorem 1 are true only

if k> Eu,'.

As far u the Theorem 2 is concerned then the results for the MBF remain true for MIDF only if

k • koA(y,x') + E u,', however insteadof the estimation

max( It-x' I, IO-u" I)£¢k'1 lu-u'l (7.2)

(see ['Po192]p185 ) for the MBF, we obtain the estimation (6.4) for M]DF, i.e.

max(l_-x" I, I_-u' I) ,=ck"zA (y,x*) lu-u*l.

Therefore one can improve the convergence as compared to MBF method by choosing a fixed

y E _, that A(y,x') < 1. Now we will show that it is possiblefor all statementsof Theorem I and

Theorem 2 to remain true, even when the fimctionsfj( x ), i - l,..., m are non-concave.

To show this we consider the following problem:

x' =argmin(f0(x),,xLf(x) =e'- l z0)=ergnin(xl-e" * z _0)-0 (73)

The fxmctionf (x) = - ,," + I is strongly concave, therefore, the Classical Lagnmgian

L(x, u)-x+u(-¢'+ ]) is strongly concave for any u>0. Then Lz/(x*,u) = 0=,, l - u = 0 i.e.

u" = 1,so L ( x, u *) =x -#" ÷ 1 and iaf L ( z, u ') = - -,moreover infL ( x, u) = - -for any u > O.

Now let _ comider the MIDF, which corresponds to problem (7.3). We obtain F (x, y, u, k ) =,

- In(.V-x)-k'Zu(ln(k(e =- l)+y-x)-ln(y-x)) = (- 1 +k-tu)tn(y-x) -k-tu

ln(k(e =- 1) ÷ y - x). So F(x,y.u *,k) = (- I ÷k'Z)ln(y-x)-k-tln(k(e=- l ) +y-x),

F/(x.y,u ",It) - ( ! -k-l)O,-x) "t - (¢ "-k-t)(k(e "- l).y-x) "l andF/(x ",y,u ",k)=O

for anyy> 0 and k> 0. Then F_ (x,y,u ",k) = ( 1 -k -I)(y_x)-2 ÷ (( k- 2)e" -(3, -x)e ".k -l)
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(k(e•-I)÷y-x)_)"land F_(x ',y,u',k)=(k-y -I)y-2.T_ore foranyy _ _ > 0and

any k >y+ I tim MIDF F(x, y. u" k) is strongly convex in a neighborhood of the solution

x" = ar[jnin {F ( x, y, u" k ) [y > x } = 0 while the Classical La_p'aagianL (x, u') = x - e"+ 1 is

strongly concave in the same neighborhood and rain L (x. u ") = - ...

Now we would like to make a few comments shout the estimate (6.4) and its relation with the

corresponding es'6mate (7.2) for the MBF. Let us consider the matrix _(,. t_ for problem (73). We

have

L ]-1 -y-t -1 . 0. t

O_'t) = -i -yk't so _.t) =

y -k

k-y - 1 k -y - 1

-k k .l)
k-y- I y(k-y- I)

It is easy to see that q (x; y.O, k) = p (x" y, O, k) = 0 and

[ •Rfx',y,O,k)=q(x'.y.O,k)-p(x',y,O,k)
$(x".y,O.k)

Therefore,taki_ intoaccount(6.22) we obtm

- @J.t)R(x ",y,O,k) -

k

k-y- 1

_ k(,v','l)
y(k-y-D

For all (y. u, k),D( •)thereexim

_-_(.V,U,k) = nrgmin {-ln(y-x)-k-lu(In(k(e'-l) +y-x) -In(y-:t))ly>x)
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/_so_,_ andQ,, _,u,t).,, _-._)(t(e '_

.we ha,_ 1_ -z*] _2k(k-y-l)'Zt. ]O-u

estimations

holdsm.te.

-s) +y-_-' and t=ylu-u'lt"smane_uSh

' I s 2k(.y + 1)O,(k =y - I ))-st, i.e. the following

'1

l:i-x"l,_2y(k-y-l)'11u-u'l

lO-u" l_20,.i)(t-y-l)'11u-u

Now we applytheMBF tothesame problem(7.3).We obtainF(x,u_) =x -k -luIn(k(e"

(7.4)

(7.5)

-1)*1).

/
So Ffx',u*,k)=fo(x')=O,F_Cx,u',k)= I-e'(k(e'-1)+Z)-1,F_(x',u',k)=0,

F_Cx, u,k) =(k-1)u,Z(k,:-k* 1) -2 and F_(x',u*,k) =k- 1 .Notethat for anyk> 1 the

MBF F ( x, u" k ) is strongly convex at the solution while the Classical Lasrangian L ( x, u') =

x - e" + 1 is strongly concave. Then (see [Po192] p185)

_k s 1 -1 ]
I 8

1 -k-I • ¢_t

l k

k-I k-I

k k
_m m

k-I k-I

therefore

p , ,

Leo,t)

_,(o,t)

!k-I

. ®_'R(o,t). t

! k-I

Due to Theorem l ( see L'PoI92] ) for Ill(u, k) • D (.) there edsts _-_(u,k)"

argzr_(F(x,u,lc)IxeR s)and for_ and _ - u(k(e_- I), I)"lthefogowingestimations
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I_-X° I a 2(k-l) -1 lu-u'[, (7.6)

I_-u' ] a2(k-1) -l lu-u'I (7,7)

holds true. Comparing the estimation (7.4) and (7.6) we find that the extra tool in the MIDF has an

essential influence on the rate of convergence for the primal sequence. By changing the "center" y it

is possible to speed up the convergence of the primal sequence even with fixed parameter k > 0.

8. Shifted Interior Distance Function (SID_ The SIDF one obtains from the MIDF by setting

u = e -- (1,...,1) ¢IL", i.e. the SIDF, which corresponds to F( x, y, u, k ) is defined by formula:

m

cpCx,y,k) - FCx, y,e,k) =(-I +k'_m)Inffo(y)-foCx))-k-IEinCkf_Cx)+fo(y)-fo(X))
4-I

(s.l)

= (- 1 +k-tm)lnA (y,x) -k -t _, In d,(x,y,k)
_=1

IfAl and A2 are takingplacethenthe setf2t_ )isbounded. For any k > m and y e f2, SIDF

_p(x.y, k ) isconvex.

Thereforethereexists

and

x(.) - x(y,k) - argafm( _p(x,y,k) / xe it"}

am

_p_'(x(.),.) =(t-mk-_)A-_(y,s(.))- F.,t/_(x(.),.)_(x(.))-k-_£(x(.))-o (s.2)

u,(.) = u,(y,k) = A (y,x( .))dr-t(x(.),.), i= l,...,m (8.3)

By setting

(8.4)

and u(.) = (ut(.), i= l,...,m)we can rewrite(8.2)asfollows:

£(x(.)) - £ f: - - o.
t.I t=l
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The followingpropositionistakingplace.

Proposi_iQn5 •IfconditionsAI and A.2are satisfied,thenforany monotone increasingsequence

{ k, } "kl>m, fimk, = .. and ye f2,:

I)the sequence {w (y,k,)= (x (y,k,),u (y,k,))}isbounded and any limitpoint (x, u) of

{w (y,k,)}isa K-K-Ts pair

z.,,'(_,_)=o, _C._) =o, _ _,o, t=_.,...,,,,,,

i.e. x =3c* *pM--l/

2) lira q_(x(y,_),y,k,) = q_* = Ln(fo(y) -foCx*)) "I i.e. fo(X') =foCY) - exp(- qo')

_oof Due to the Corollary 20 (see [FiacM68]p94) it follows from assumptions A1-A2 that the set

Ot,(y ) isbounded, thereforeinview ofthe inclusions12,,(y) _ Oh(y) _ ...ot_k(y ) _ G_,.(y)...

thesequence {x (y, k,)} isbounded forany y • f2,.So itcontainsa converging subsequence.We

can assume without loosing generality that

x(y,ko)=i
|q.

It is clear that x depends on y • int f2, we will omit this indication to simplify notations.

Then lira qo(x(.),.) = _ @(x(y,k,),y,k,) = _ [(- 1 +mk,"l)ln(/'o(y)-fo(X(.)))
II.Q. 8''

-k:'_L__CxC.))+C00')-/0CxC')))k:')+ink,-'_k,]
1=1 m

= tim[ -tnC:o(y)-./'Cx(.)))-k/tE tn_Cx(.))] (s.5)
8-.- 1ol

Therefore x • Q, moreover x e 0 f2, i.e. there is at least one index l 'ft(x) = 0, otherwise we would

be able to find _. > O:

_(x(y,k,)) _,_.,v, = 1,...,m

for any large enough k,.
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Therefore using formula (8.3) for the Lagrange multipliers we obtain

_m =,(y,k,) = o, l = 1,...,m
k.-.-

So, from (8.4) we have f_0(x)ffi0 x e Q which is impossible,because (I.I) is a constrained

optimizationproblem.

Hence, x ¢ a_ and we willassume thatI = {i:_(x) = 0 } isthe activeset.

Now we want to prove that{ u (.) = u (y,k,)} isa bounded sequence.Assuming the opposite we

m

can find i" u, (*) ffi u, (y, k,) -. =. Dividing both sides of(8.4) by :E u:(*) we obtain
l=l

( t + =o.
i=l i=l

(8.6)

where u-_(")= u,(') (E u,(*))-I 1= l,...,m

Taking a limit in (8.6) we obtain

E _-_(;) = o =d _,=o,1E7
t.l

(s.7)

and not all utffi0.

However, (8.7) is imposs£ole because it contradicts Slater condition (1.2), so {u 0', k, )} is bounded.

Without losing generality we can assume

i

u= limuO,,/O
k.,.m

Taking the limitin(8.4)we obtain

J_o6) - E_f_ (x)=0 and _ft(_) = 0,i= l,...,m

Inview of u • I_. and x e 12 we have x = x', u = u' i.e.(x,u) isa K-K-Ts pair.

To findliraq)(x(y,k,),y,k,)we considerfastthepassivecontraintsi:ft(x)> 0. Itisclear

thatfor ye t3,

u= g'_tnL(x(y,k,))=0,i;7 (s.s)
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Now we are going to consider the active constraints keeping in mind the formulas for the Lagrange

multipliers (5.7). We have

- f0(Y) -fo(X(')) ie7
o _ u, =t_,..k,f,(x(.)) +L(Y) -L(x(')) '

For u-_>O we obtain f_(x(.)) =0 (k,"), for u'_:O we have

for any ye f2,

I_ k._Inf,(x(.))=o,i_7

timk,f_Cx(.)) =®,_
I.q,_

(8.9)

Using (8.6) and taking into account (8.8) and (8.9) for any y _ f2, we obtain

_,.-_n _,(xO,,k,),y,k,)= r.n [ -in(fofY)-fo(XO',k,))-k,-_E _/_(x(.v,k,))]

= Iim [ -in0ro(y) -fo (x (y, k,)) ] = In [fo (Y) -fo (x') ]-l. Therefore fo(X ') =fo(Y) - • "'"
t,._m

If for the probl_n (l. l) the standard second order optimality conditions are satisfied then the

following statement, which is a corollary of the Basic Theorem, is taking place.

Assertion 2 If the second order optimality conditions (1.4) - (1.5) are satisfied, then there exists

/Co> 0 such that for any y¢_, and k z ko A(y,x') + _ u," > m the following statements are taking

place.

1) there exists a vector

x(y,k) = atgmin { _p (x,y,k )/x ¢ R" )

such that q_ (x(y,k),y,k) = 0"

2)forthepmr ofveacxs x(y,k) , u(y,k) = (u,(y,k) = A (y,x(y,k)) d,-t (x(y,k),y,k) , t ffi1,...,m)

the following estimation

max{ Ix(y,k) -x" I, I u(y,k) - u' I} ¢ ck-I ,s (y,x') (8.10)
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holdsand c > 0 is independem on k and y.

3) the shifted interior distance function tp (x, y,k ) is strongly convex in a neighborhood ofx (y, k ).

9. Numerical Realization of the MCM The numerical realization of the MCM requires:

I) to find a "center" y e int f_, ;

2) to find a triple (y, u, k ) e D (.) ;

3) to replace the infinite procedure of finding _ = _(,y,u,k) for a finite procedure, which retains the

contractibility properties of the operator Cy, t.

To find y E int_, we consider the following convex programming problem

max{x,+t/f,(x ) =x. t z 0 , l = l,...,m } (9.1)

Starting with a "warm" start (x°,x°.t) ' x°.! < rain (f,(x°)/1 ,c I ¢ m } we apply any IPM for

solving (9.1) up to the point (x,x-m+l) " x_+ 1 > _, then we set y = x.

To find a triple (y, u, k ) ¢ D (*) one can again apply an IPM, starting with x -- y, u = e=

and k > m and increasing the barrier parameter followed by a Newton step for solving the system

¢'.( x,y, k )=O'inx.

The other option is to find an approximation for a vector x 0', k ) :q_" ( x (y, k ), y, k) -- 0",

using smooth unconstrained optimization techniques. In particular, one can use Newton method with

step length, which we will describe later.

Due to Proposition 5 or Assertion 2 to g, ui (y, u, k ) E D (.) it is enough to find an approxi=

mation for x (y, k ) and u (y, k ) when k > m is large enough.

Also the parameter k > m has to be large enough to guarantee that C_,. t is a contractive

operator for a given y • f_ ,, i.e. 0 < _',_t -- c k'l A(y, x') < 1. The constant c > 0 is associated with
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the input data and the size of the problem and apriori unknown as well as the value A(y.x') for a

chosen y • f2 ,.

So there is no explicit way to find for a given 0 < y < 1 a "center" y e f2, and k > 0 such that

y< ck't A(y,x')< l.

Therefore we have to find an implicit way to adjust y e _, and k > 0 to an apriori chosen

0 < y < 1 to guarantee the inequality y < c k .t A(y, x" ) < 1.

Fast, let's consider for a fixed y • f2, and k > E u,, a non negative function v ( w, y, k ) --

v ( x, y, u, k ) : IVy.k = f_t O' ) x U,. k " IL t , which is defined by formula
m

v(w,y,k) = max { l F_(x,y,u,k) l , max{-ft(x)}, E u, lf,,(x) l }
l_rm t-i

The following proposition is a consequence of the K-K-Ts optimality conditions.

Proposition 6. For a convex programming problem (1.1), any fixed y e f_ ,, u e IL" and k > E u, the

foUowing statemem is true

v(x,y,u,k) = 0 - (x,u) = (x *,u *) ffi w ° (9.2)

Proof. First, v(x,y,u,k) " 0 -- max (-ft(x) / 1 s I s m } s 0, i.e. -fl(x) _: 0 or

/,(x)_0,_--I .... ,m, soxef2.

m

Second, vgy, u, k)=O- Eu, (x)l=O,i.e.u, =0, I= l,...,m,

Therefore for any l s i _ m

u,>0 ..*f_(x)--0 andf_(x)>0 - u,--O (9.3)

Tlfird, v(x,y,u,k) =0 -,. [f/,(x,y,u,k) [ =0

Therefore in view of(9.3) we obtain
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F{(x,y,u,k) - 1-k- Eu, fo(x)- u,
,.l kf,(x)÷foOO-fo(X)

- - --o" sad AO,,x)>0

Hence,
It

v (x, y, u, k ) = 0 leads to x e t_ and L/_(x,u) = IY', E u,f_(x) = O, u e. it',, so
t=l

w=(x, u)= (x:u')=w"

Let's consider the second part ofthe statement. We have to prove that v (x" y, u" k ) = 0.

Fh'st,x"e Q, thereforemax { -f (̀x')/I s i < m } s O,theninview of (x" u" )isa K-K-Ts

pair, we have E u," If, (x') I = E u,'f, (x") = 0 and due to the Proposition 2 F', ( x" y, u" k ) =

a "_(y, x" ) L', (x', u" ) = 0". Therefore v (x; y, u" k) = 0.

It
It

For a fixed "center" y • D, and a fixed barrier parameter k > _ u t one can consider the
i=l

non-negative function v(w,y,k)" IVy.k =Otfy) x Uy.t -. It I. as a merit fimction, which measures

the proximity from w -- ( x, u ) to w"= ( x" u").

Due to the smoothness of f` (x), i = O, l,...,m and boundness ofF/,., there is a constant L that

v(w,y,k)= v(w,y,k)-v(w',y,k) _L lw-wIt I, Vwe W,.t (9.4)

Without loosing the generality we can assume that L s I.

Further, if for a given 0 < y < I the "center" y • t'2, and the barrier parameter k > 0 are

chosen appropriately, i.e. ¥,_k = c k "_ A(y, x" ) < y < 1 then, due to (6.4) for any u • U,.k we have

max{ I..°-x'l, I_)-u'l)¢vlu-u'l

and

Let's assume that for u° e Uj..k we have I u o _ u ItI s I,then MCM (5.6)-(5.7)produces
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a sequence { w* = ( x', u')} •

max{ I x ' - x

Then in view of (9.4) we obtain

'1, lu'-u'l)s_" (9.5)

v(w ",y,k) =v(w ',y,k) - v(w ",y,k) s ¥' (9.6)

Inotherwords iffora given0 < y < I the"center"and thebarrierparameteraresuch,that

Yy.t_ Y, then {y* }_'.0isa majorantforthesequence{v(w ',y,k)}_'-t.

We willsaythatthepafir(y,k ) isconsistentwitha givenratio0 < y < I if(9.6)istaking

placeforalls > I.

To checktheconsistencyofa chosenpair(y,k) fora givenratio0 < y < I one hastosolve

infinitenumber ofunconstrainedoptimizationproblems.Moreover,eachproblemrequiresinfinite

number ofarithmeticoperations.

So,firstwe willshow how tokeeptheestimation(6.4)withoutsolvingan unconstrainedopti-

mizationproblemateverystep.

Then we willshow thatthenumericalrealizationofMCM doesnotrequiretheconsistency

of chosencouple(y,k ) witha givenratio0 < y < I fi'omthebeginningoftheprocess.We will

achieve the consistency by adopting the barrier parameter in the process of solution.

m

Let's consider a number 0 > 0, k > E ul and a pair (x, y):

m_'.'(_,y,u,k)lso k-'lA (y,_)d-t(x,y,k)u - u l

We update the Lagrange multipliers by the following formula

= AO,,_),t _ (_,y,k) u

(9.7)

(9.s)

The following assertion is taking place.
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A._t:tioa__ If the second order optimality conditions (I .4) - (I-5) are satisfied then for any _t > 0

and y • D, there exists such ko > 0 that for any (y, u, k ) e D (*) the following estimate holds

max{ I;-x'l, lu-u'l}<¢k-_aO,,x')(l*O)lu-u'l (9.9)

The estimate (9.9) can be proved by a slight modification of the considerations, which have been use

to prove Lamina 2 (see[Po192]).

$o the consistency of a couple (y, k ) with a given ratio 0 < y < l one can check using instead

of(9.6) the following inequality

v(w',y,k) < y" , s > 1

where w'* = (x*, u* )"

IF_/(_'",Y,_',k)I• 0 k-tIA (y,_.,z)d(;'",y,k)u' -_'I

_,+,= a O,,_'+')d-'(p+',y,k)_ '

(9.io)

(9.11)

(9.12)

Due to the Assertion 2 for any fixed "center" and a given ratio 0 < y < I there exists a threshold

k,., z ko that for anyk z k,. ,we have ck-tA(y,x ')(1 *O) a y < 1 and u e Uy.t -- ue Uy.t.

In other words, for k z ky., > ko and u • U_,.k :

1) the approximation x that satisfies (9.7) can be found for a finite number of operations;

2) aiter every I.agange multipliers update, the distance fi'om the approximation x and u to

x" and u" shrinks by a factor 0 < y < 1;

3) the new vector Lagrange mulfipfiers u belongs to Uy. t again.

So, the inequality (9.10) holds for any s > 1, i.e. the fixed couple (y. k ) is consistent with a fixed

given ratio 0 < y < 1.

We would liketo emphasizethattheconvergence ofthe method (9.1I)-(9.12)isnot due to

the "center"or barrierparameterupdate,but ratherdue to the Lagrange multipliersupdate.
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Thereforewhen itcomes tommaericalrealizationoftheMCM (5.6)-(5.7)themain problem

istofindfora chosenfixed"center"y • f2,and a givenratio0 < y < I thethresholdky.r> ko that

forany k z ky,,thecouple(y.k )willbe consistentwith0 < ? < I.

Intheproceduredescribebelow the"merit"functionv (w,y,k )isthekey element,which

we aregoingtousetoadjustthebarrierparametertothelevel,which willmake (y,k ) consistent

with0 < y < I whilethe"center"y • t'2,and theratio0 < y < I arefixed.

To describetheMCM we introducetheRelaxationOperatorR :f2k(y) -"f2h(y) by formula

Rx=x

where x isdefinedby (9.7).

We startwitha "center"yet'2,,we setx-'u= y and u-'u= e,,.Wechoosetheratio0 < y < I

anda monotoneincreasingsequence{k,} :/Co> m, k,< k,._,timk,= **.Let e > 0 astherequired

accuracy.

Let'sassunaethatthepair(x#,u* ) andthebarrierparameterk = k, havebeenfoundalready.

The nextapproximation(_*'1, u,.l) and k = i',.I we findusingthefollowingoperations.

I) x. u.=;';

- Cv, )2) x'=Rx, u=A d -t ,y,k)u;

w

3) if v(w,y,k)• e, then x' =x, u'= u and stop;

ifv(w,y,k)> e

4) It)if v(w,y,k)'_ y**l and k> Eu t, then _'**l--'k,x *'l--x, u*÷!-u,

s+ I:=s and goto I.

b) if v(w,y,k) ,:?,.t, but k • Eu,, then k:= _',.l= Eut + I ,

x '.l--t,,1x + (I -t,.1)Y,t,.l- max{l >t>0 "y+t(x-y) • Qk(,V)},
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u ''! "u, s+l ' =s and go to 1.

c)if v(_,y,k)>'f''L,k=max{k,,l,E. t+ IL

x(s)= argn_{fo(xt)/I_i_s},t,.l= max {I_t>0"

y*t(x(s)-y)e Qt(.y)}, x" =t,,lx(s) ÷ (I -t,*1)Y' u = e= and go to 2.

It comes to the point wheny and k became consistent with 0 < 7 < 1, then every application

of the relaxationoperatorleadsto x e f_t(Y) that u = A (y,x)d-l(x,y,u) • Uy.t.

From this point on the "center" y _ f2, and the barrier parameter k ffii" is fixed, every

Lagrange multipliers update shrinks the distance fi'om x and u to x" and u" by a factor 0 < y < 1 and

,e Uy.k-_E Uy.k.

The numerical realization of the operator R is based on smooth unconstrained minimization

technique.

We will descn3_e it based on Newton Method with a step length for finding an approximation

x for the _ =_(y,u,]¢)=argnfm{f(x,y,u, ik)/xe IP}.

The Newton direction_ we findfi'omthe system

F_(x,y,u,k) _ = -F/,(x,y,u,lc) (9.13)

The step length t we find using Armijo rule. We check the following inequality for t = 1.

F(x ÷t_,,y,u,l¢) - F(x,y,u, lc) s 1/at(F/_(x,y,u,l¢), _, ) (9.14)

If (9.14) is satisfied we set

x'-x+t _ (9.15)

if not, we set t = _/2t and check (9.14) again up to the point when (9.14) is true, then update x by

formula (9.15) and go to the first phase of the Newton Method - find the Newton's direction ¢.
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We continuetheprocess(9.13),(9.15)up tothepoint,_,which satisfies(9.7),

A

Note thatifx iswithintheNewton areaofx(y,u,lc),thenittakesonly 0 (InIne't)Newton

stepstogetx.

Inview thatfrom some pointon boththe"center"y E f2,and thebarrierparametersk > 0

arefixedand u (_Uy,k -.,u (_Uy,t theprimalapproximationwillremainintheNewton areaforthe

systemF',(x,y,u,k )= 0 inx al_ereveryLagrangemultipliersupdate.

Such a pointwe call"hot"start.From thispointon atmost 0 (InIne"_) Newton steps

requiresforeveryLagrangemultipliersupdate.Each updateshrinksthedistancefrom thecurrent

primal-dualpair(x,u) totheprimal-dualsolution(x',u")by a factor0 < y < I.So from this

pointon ittakes0 (Ine"I) •0 (InIne"I)togettheapproximationto(x',u") withaccuracye > 0.

To reachthe"hot"startsometimesone hastoincreasesignificantlythebarrierparameter.

For averylargebarrierparameter,theMIDF became closeto IDF, soinsuchcasewe might

losethethepotentialadvantagesofMIDF.

Also,asitwas shown inSection5,MCM isclosetoproxmethod withentropy-likekernel.

Itiswellknown thatproxmethodsconvergewithlinearrateand againtodecreasetheratioone has

toincreasetheparameter.

On the otherhand beinga ClassicalLagrangean.forthe equivalentproblem the MIDF

possessespropertieswhichmake them fundamentallydifferentfrom the ClassicalLagrangean

L (x,u )fortheinitialproblem.

Thereforewe can expectthatthedualfunctionand thedualproblem,which isbasedon

MIDF, mighthave some Interestingproperties,which willenableus to improvetheconvergence

withoutincreasingthebarrierparameter.
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In the next section we are going to cor_der some aspect of the duality theory, which is based

on MIDF.

I0. Dual Problems Based on MIDF. The MIDF, as we mentioned above, is a Classical Lagrangian

for a problem, which is equivalent to (I. I), but not every result of the duality theory can be translated

automatically when instead of the Classical Lagrangians for the initial problem, one considers the

IV[IDF.The situation at this point is different from the situation with the Modified Barrier Functions

(see [Po192 ]), which are also Classical Lagrangians for a problem which is equivalent to the initial

problem (I. I).

On the other hand, using MIDF, it is possible to obtain some new important characteristics

for the dual functions and dual problems, which are impossible to obtain by using the Classical

Lagrangians for the initial problem.

We are going to start with the basic optimality criteria for the convex programming problem.

Theorem 3. Let for the convex programming problem (1.1) the Slater condition (1.2) is satisfied,

then

l) iffory E into and k > 0 thereexistsa vectoru"= (u: ,...,u',)> O"suchthat

u,'fj(x') =0, l = 1,...,m and F(x,y,u',]¢) _F(x',y,u',k),Vxe it" • A (y,x)> 0 (10.1)

then the vector x" is a solution of problem (1.1).

2) iff_ (x) • C _ , i = 0, 1,..., m, and if x" is a solution of problem (1.1), then there exists u" > 0

such that (10.1) holds true for any y E int f_ and k > _ u_',

3) if(x: u')isasaddlepointoftheMIDF F(x,y, u, k)"

F(x,y,u ",k) _,F(x ",y,u ",k) > F(x ',y,u,k), Yx _ it" _ (y,x) > 0, u • i_; (I02)
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then (x', u') is the K-K-T's pair for any y • int f_ and k > 0

4) if(x',y')isaK-K-T'spairthenthepair(x" u')isasaddlepointoftheMIDF F ( _:,y, u, k)

foranyyeint f_ andk >_.u,'.

PrOOf."

1) Let (10.1) holds true, then

-inA (y,x)-k-_E u,'[in(k_(x) +a ty, x)) -ina tY,x)]

_,-in A(y,x ")-k -_E ut'in[ka "_(y,x ')/_(x ")+I )]

= -inAty, x'),

i.e.

i

-inA (y,x) > -inA (y,x ") +k -I E u: .in[ kA-t(y,x)_(x) + I]
t=l

In view of A Of, x ) > 0 the last term at the right hand side is non-negative for Y x • fJ, therefore

Ina (y,x) ._Ina (y,x ')-fo(X) _,fo(x'), v x • O:a'(y,x)> 0

and x" is the solution of problem (1.1).

2) ifx" is the solution of problem (1.1), then there exists u" > 0" such that u',f_ (x") = 0, r = 1,...,m

and L'x (x: u" ) = 0', therefore due to the Proposition 2 we have

r_(x',y,u',k) = a-' (Xx')L_'(x',u') ;0

TheMIDF F(x,y,u *,k) = (-I +k'1_.u_') In A (y,x) -k-tF.ut" In (kf_(x) + A (y,x))isconvex

functioninx e R'" A (y,x )> O forany y e intC2 and k > F.u,'.Therefore F (x,y, u',k) >

F(x',y,u',k)foranyxeR'" A (y,x) > 0.
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3) if(x', u')is a saddle point ofthe F(x,y, u, k), i.e

m

-in_ (y,x)-k -_E u,' [in(kf,(x) +A(y,x))-inA (y,x)]
m

_-inAty, x')-k-_Eu, [_(kf,(x )+a(y,x ))-inatY, x')]

z -ina (y,x')-k -_E u,[_(kf,(x') +A(y,x "))-inA (y,x ")1
t=l

then x" e f2 In fact, suppose the contrary, i.e. there exists i0 :ft,(x ") < 0, therefore

In(kfto(X')+A(y,x'))<O forye int fi andk> 0. So by fixing u, = 0, l ,_ i0 and increasing

u_, we obtain a contradiction with the right side of the inequality (10.2), sof_ ( x" ) z 0 i = 1,...,m.

Now we will prove that if (I0.2) holds true, then u,_, (x") = 0, i = 1,..., m. In fact for u = 0

ill

fi'om the right side of(10.2), we obtain _ ut'in(kA-t(y,x ")ft(x ") + 1) < 0 but we just proved
l-1

that f, (x') z 0, i = 1,..., m, therefore

gl

E u[in(kA-l(y,x')f_(x')+l) z O, so for
t=l

In(tA-t(y,x')f,(x') + t) Zo,l-- t,..._

any y • int CJ and k > 0 we have

and

u: In (]cA -l(y,x ')ft (x ') + 1) = 0, l = 1,...,m. Hence u,_ (x') = 0, i = 1,..., m and fi'om the left side

of the inequality (10. 2) we obtain

-InA (y,x) Z -InA(y,x')+k-tEU,'In(kA-I(Y,X)f,(x) + 1).

In view that for any x • fJ • A(y, x ) > 0 we have In(kA-t(y,x)f_(x) + I ) z 0 we obtain that

-InA (y,x) > -InA (y,x ') or

Intfo(y)-fo(x)) sIn(fo(y)-fo(X'))-fo(x)Zfo(X'), Vxe a" A(y,x)>O

i.e. x" is the solution of problem (1.1).

4) Ftrst of all, note that if( x: u') is the K-K-T's pair then x" is the solution of problem (1.1). Using

the same consideration as in 2) we obtain F', ( x', y, u; k ) = 0 and F ( x" y, u" k ) = In A(y, x" )

for anyy • int fJ. Taking into account the convexity F ( x, y, u" k ) in x for my k > E u,"we obtain

F ( x, y, u', k ) > F ( x', y, u', k ), V x • fit (y), and due to the definition of the function
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F ( x, y, u, k ) we obtain

F(x,y,u;k)z F(x;y,,,;k), VxeR''A(y,x)>O

Also k "=E u, tn(kA -I (.V,X")ft(x ') + ! ) z 0,1 = l,...,m. Therefore

F(x ",y,u",k) = - _ (l'o(.v) -fo(X"))

= - L__(.v) -fo(x"))-k -_Eu,[_ (k_(x '), _ (.v,x') -tna 0,,x ')]

=F(x',y,u,k), VueR'..

So(x; u') is a saddle point ofthe MIDF F(x,y, u, k) for anyy¢ int _ and k>_ u,"

We have completed the proof of Theorem 3

Remark 4. We want to emphasize again the difference between MIDF F ( x, y, u, k ) and MBF

F(x, u, k). The statements 2) and 4) are not true (see Section 7, example 1) without the condition

k >E u," while for the MBF (see Theorem 4 [Pol 92]) the statements 1) - 4) are true for any k > 0.

Now we are going to consider the dual pair constrained optimization problems, which are

based on MIDF Lety ¢ int f2 and k >_ u, be fixed and _y,t(x) = sup F(x,y,u,k)Then
u_.O

),.k(x) = f ln_(-v) -fo(x))'
=O )

ira (.v)-fo(x)>O ,f,(x)= o )t= L..._

otherwise

and the initial problem (1.1) reduces to finding

x" ==rgmin{v/,.t(x) Ix • it" )

We define the dual function by the formula q)y,t(u) =
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problem consistsof finding

u" =arsmax { _,.k(u) l u_O}

Due to the definition of' qty. k (x) and q_y.k (u) for any y ¢ int f2 and k > 0 we have

-ln(fo(y)-fo(x)) = ,,.k(x) _ %.k(u) . v x e Q tL(.v._)>O, u e R:

Therefore if x and u are feasible solutions of the primal and dual problems respectively and

(_) (;)*j,.k = *,.t then x = x" and u = u"

00.4)

The smoothness of the dualfunctionq_y,k(u )depends on the smoothness of f_(x ),i- O,

and convexitypropertiesofthe MIDF F (x,y, u,k )inx • R'.ll...J_

The next theorem describes the smoothness properties of the dual function q_ ,. k ( u ).

Theorem 4. If (l. l) is a convex programming problem, f_ (x) • Ca , i = 0, l .... , m and conditions

(1.3) - (1.5) are satisfied, then there exists ko such that for any fixedy E hat f2 and any fixed k

koA(y.x') + E u," :

1) the concave fianction q_,. _( u ) is twice continuously differentiable in Uy. k.

2) the gradient of the dual function is defined by formula

_(,.,).(u) =_'._(_(.v,u,k),y,u,t)=_.2(_(.),.)

=-k-'(t.(kL(_(.))A-'(y,_(.))+l),..,t,,(kf.(_(.)A'tO,,_(.))+l)) 0o5)

3) the Hessian of _ _ _( u ) is defined by formda

t/ U• t,,k)-( ) = - _':'.(_('),')(F_C_('),')) "' '''^"_'=txt.),.) (10.6)

wh_ F_(_(.X.)-F'_(_(.)..).

_oof: First of all, note that _0 ,._,( u ): !_" -. R is a concave function whether or not the fianctions

f_ ( x ), i = 1..... m are convex. If the standard second order optimality conditions (1.3) - (1.5) are
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satisfied then due to Theorem 2 the function F ( x, y, u, k ) is strongly convex in the neighborhood

of _ = _(y,u,k) for ¥ (y,u,k) e D(,).

Therefore _(y,u,k) = _(,) is a unique minimum of F( x, y, u, k ) in x while <p,. ,( u ) =

F(_(y,u,k);y,u,k) is smooth in u cUy., i.e., there exists the gradient q_'_,,t_,( u ) --

F_(._(.),.)._,,(.)+F,Z(._(.),.).TakingintoaccountF=Z(._(.),.)=0 we obtain

q,_tw(,,)_-_'(._(.)..)-( °q'u,t_(u)au1

= -k-' (_(kA (._(.)),,,-' 0,,._(.))÷l ), , In(kf.,((9(.)) A ' 0,,..o(.))+l ))

Further _(y,u ',/0 =x" and f1(_(y,u ',/0) =fi( x ') = O, i = I,...,,", therefore

_ _o.(u ")- -,_ ' ([.(k A (x "),', ' O,,x")+1),. _ (kf,(x ")A' O,.x")+1),

tn(kf,. _(x ').',-10,,x ') +1),. In(kf. (x ') A _O,,x") +l)
/.- r ,_

:(o,...,O,-k-_la(ka-_(y,x')£.,(x')+t),...,-,t--1la(,t,_-_O,,x")f,(x")+t))

Since the matrix F_(_(.), .) is a positive definite for any fixed y e int k"2and k z ko A(y.x') +
,a

F, u," the system F', ( x, y, u, A-) = 0 yields a unique vector function x (y, u, k ) such that

F.'(Y(.v,u,k),y,u,k) • _"(x(,),.) • 0",

Differentiating the last identity by u we obtain

therefore

Hence

rue Uy.t and ,_(y,u',/0 --x'

I!
F'_'(_(y,u,k);y,u,k) _',(y,u,k) ÷F;'(9(y,u,_);y,u,_) -o"."

v,,, u,.,.
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(P_,tl.. (u) --'"'^" °), ")_(_'..txt ") --

1#^ 11^
-F_ (x("),")F,_(x(.),.)-iF_(_ (o),")

(io.7)

F_Ci(.),.) = F'/r _(.),.) =
ill

-a -I (_( • ),y,k)f' (_( ,)) - A-i (y,i( ,))D( (_( • ))d-t (_( , ),y, k )F= (_( • ).

To compute _0"_,.k_(u" ) we first consider

F="(_(.v,=",t),y,=",k)=_'="(x',y,=",k)=

-d-t (x ",y,i)g (x °) - a -t (y,x ")D(x ")d -t (x ",y,k)F= (x ") =

,',-i (.v,x")l " , 0".""

0 m -v,r, -I ,a;,.r(X ,y,k)

:_(x') - a-t(y,x • ) o,.,.o,.._,),<,.,]o'-'.'. [Oiasf,(x')l',_,.t
(lo.s)

then

, -I // * F//{I;'//'t-I I/q>_._)=(="")= -F"_(x',y,u',#OF'='(x',y,=,k)) F'_'(x,y,,,',t)=-_=,_=. F,:

Remark 5. The dual function _p(u) = ir_ L(x,u), which is based on the Classical Lagrangian
xlit s

L(x,u) for the initial problem is in general nonsmooth under the conditions of Theorem 4. It becomes
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smooth,ii_forexarnple,fo (x)isstronglyconvex,whilethedualfunctionq)<,.k)(u),which isbased

on theMIDF F (r,y,u.k )issmootheven forthenonconvexprogramming problem,when along

with (1.3) - (1.5) the growth conditions (see _Po192] p. 181) are satisfied and k >/co A(y,x') + _, u,'.

The next theorem establishes the main result of the duality theory which is based on the MIDF.

Theorem 5. Letfo (x) and all -f_ (x) be convex, then

1) ifS ( x ) ¢ C _ , i - 0,..., m and the Slater condition holds, then the existence of the solution x" of

the primal problem (1.1) implies the existence of the solution u"of the dual problem (10.4) and

qly.k (x" ) = tp_,t ( u" ) for any y e int f2 and/c> Z_u,'.

2) iff_ ( x ) • Ca , i -- 0,..., m and the optimality conditions (1.3) - (1.5) are taking place, then the

existence of the solution u"¢ Uy.t for the dual problem implies the existence of the solution x" for

the primal problem and _y. _ (x") -- _0y., ( u" ) for anyy ¢ int f_ and k >/co A(y,x') + Z_u/.

3) iff_ ( x ) • C_ , i - 0, .... m and the second order optimality conditions (1.4) - (1.5) are satisfied for

the primal problem, then the corresponding conditions are taking place for the dual problem (10.4)

for anyy ¢ int O and/c >/co A(y,x') + _ u,'.

1) Let x" be a solution of problem (1.1), then there exists (see Theorem 3) a vector u" such that

(10.1) holds true for anyy ¢ int Q and k > Z_u/. Hence for any u z 0 we obtain

9,.,(u") = rainF(x.y.u ".k)= F(x ".y.u'.k)=
xar

X __,.k( ),,F(x ,y,u,/O" m/nF(x,y,u,lc)= _y.k(u),Yu •R,"
zir

so u' is a solution ofthe dual problem and Oy._( x° ) = _y,, (u") i.e.
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fo(x ') -fo (,v)- exp(- %.k(u ")) (too)

for any y a int f2 and k > _ ur.

2) Conditions (1.3) - (1.5) imply that the function F(x, y, u, k) is strongly convex (see Theorem 2)

A
in then_ghborhoodof_(y,u,k) - argn_m {F(x,y,u,k) Ix ¢ R _ }, therefore the vector x(y,u,k)

is unique for any (y, u, k ) ¢ D ( • ) and because of the smoothness of f, (x), J = 0,..., rn the

gradient ¢p' ¢y.k),( u ) exists.

Let u ¢ Uy.kbe a solution ofthe dual problem (10.4) and x = x(y,u-',k). Then the optimality

conditions for the dual problem (10.4) are fulfilled at u, i.e.

/ Q

tpc_.,>,,(u)=-k-1(In(k_(x)÷A (y,x)-In'S (y,_)¢O, for l'_-0

/

q_c,.k_.,(u)=-k-_(tn(k/,(_)*/_O',_)-InAOG)=O, forI-_>o

Then _=0 implies In(k_(x)+,s(y,_)-In&(y,._)zO ..._(_)zO while u_>O implies

In(k_(x) + ,s(.y,x))=InA (9,x)-_(x) = O, i.e._"¢ Q and forthepa/r(x, u ) thecomplemen-

tarityconditions_(x)u I= O, i= l,...,,,nhold.Therefore

%,k)(u)=-_A (v,_)-k-zE_,(_(k/,(_).A _,_))-tn_¢.v,_))= -tnALv,_)=%,kG)

i.e.forthe primaland dualfeasiblepair(x,u ) we have

q_,.k(_)= ,,.k(_) = -lna(y._)

hence,x=x °, u=u"

3) We will now show that the second order optimality conditions hold for the dual problem (10.4)

in the strict form.

First, we note that the gradients e: = ( 0,..., 0, 0,..., 1 ,..., 0), l=r+ l,...On of the active

constraints u_ _ 0, i = r + 1.... , m of the dual problem are linearly independent. Later we will prove

that the Lagrange Multipliers, which correspond to the active constraints of the dual problem axe
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positive. Along with the linear independence of the e,, i = r + 1.... , m, this forms condition (1.4) for

dual problem (10.4). Now we will prove that the condition type (1.5) is also satisfied for the dual

problem.

I

Let us consider the Classical Lagrangian L(y,t)(u,k ) = (p(y.t)(u). _ ktu t for the dual
t=l

problem (10.4). The Hessian of the Classical Lagrangian for the dual problem is L_. ,)_ (u, i) =

q)"(y, k)- (u) and the second order optimality condition for the dual problem (10.4) is

(L0,,t)nll (u *, k*)v,v) < - _t (v,v) , V v • R= • (v, et) ffi0, i =r + l,...,m, p >0 (10.10)

To prove (10.10) we first consider the matrix F_ ffi F"= ( x" y, u" k ). Taking into account

conditions (1.4) - (1.5) for the primal problem, we obtain from Theorem 1 that

mineigval F= ffi i_A" I (y, x')>0

for any y e int 0 and k z k o A(y,x') + E u,'. Let

maxeigval {- u. , , , ,

Then maxeigval F_ = MA" _ (y, x'), so for any w • R" we obtain

_-i _ (y,x ')(w, w) z (F"-=I w, w) zM -1a (y,x')(w, w)

__t-lA * " ffi *(y,x)(w,w)<(-F//-lw, w) < =M -l&(y,x )(w,w)

Therefore due to (10.6)

" _.')v,v) "(L_.t)n(u ', = =(q)o,.t), (u ')v, v)

11 II- I 11
(F'_'(-F_) r'_' v,v)f((-FU) -' uF_v,Fffi, v)

Let v ffi( vl,..., v,, ), then ( v,e, ) = 0 - v_= 0, therefore any vector v • R" • ( v, e, ) = 0, i ffir + 1,...,m

has the form v = ( v_,..., v,, 0,..., 0 ) ffi( v<,_,0,..., 0). Therefore, due to (10.8), d "_(Jr; y, k ) v = v and

D (x') v = 0" we have

11
FY,(x *,y,u *,k)v = -ffr(x *)d-I (x ",y,k)v - ,*, -l (y,x *)Fr (x *)a-l (x ",y,k)D(x *)v
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So

; - A-I(y,x')fr(x')v

n _.',y,k)v,v) n I n n(LuCu', = (CF._)-F_"v,F._v)

< - A -I (.y,x * I // # -I /r . /r •)M-(F.:v.F_:v)--A (.V.X')M"(fcv)(x)Vcr>,fCv)(x )vc,))

- - A-__v,x')M-__>(x ")f':,_(x"),,c,_,v_,_)

It follows from (1.4) that the Gram matrix (_(,)(x" /r)f (,)(x ° ) is nonsingular. Therefore,

_eis_ _(_')f':,_C_') - _o>o

and

O_c,>(x. ,r ,))fc,j(x v<,_.vc,_) _ _o(Vc,_.vc,_) _(v.v)

therefore, for I_ = A't (Y,X ') M'I I_ > Owe obtain

II

(Lo,.t),,(u ",k')v,v) s - _t(v,v), Yv" (v x • t ) = O, i =r+l,...,m

i.e. the condition type (1.5) for the dual problem (10.4) is satisfied.

Also invicw off_(x') > 0, i fir+ 1,..., m we have

= - q)cy,h).,(u ) = k-_In(kA-_Cv,x )'f,(x') + x)>oJ = r+ x,...an

which along with the linear indcpendeoce of the gradients e,, i = • + 1,..., m of the active constraints

u, > O, i = • + 1,..., m, and (10.10) comprise the second order optimality conditions for the dual

problem. We completed the proof of Theorem 5.

m

_11_g_ • The rcsciction q_(v.t)(u) = _o(y.t)(u ) I u,.n = "'"= u= = 0 of the dual function
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_o0_( u ) to the manifold ofthe active constraints u_ = O, i = r + I,..., m of the dual problem (10.4)

is strongly concave if the conditions of Theorem 5 are f_d_ed.

Remark 6. Statements 2) and 3) of Theorem 5 are in general not true even for a convex program-

ruing problem if the dual function _p (u) = inf' L (x, u) is based on the Classical Lagrangian
xllP

L ( x, u ) for the initial problem. However, these results are valid for any k z ko A(y,x') + _ u," and

any y • intfJ even for a nonconvex pro_ problem if the conditions (1.3) - (1.5) and growing

conditions (see [ Pol 92 ]p. 181 ) are fulfilled and the dual functions are based on the MIDF

F(x,y,u,k).

Remark 7. All statements of Theorem 5 hold for the Modified Interior Distance Function H (x, y,u,k)

and the corresponding dual function

hy, t(u ) = mill {H(x,y,u,k) ] x • R _ )

with the only difference that instead of (10.9) we have

-:oO,)-

for any y • int t'2 and k > E u,'.

Let y • int _2 and k z k o A(y,x') + E u," also let (y. u, k ) e D (.). We consider the dual

problem (10.4) in the following form

u" = nrgmax {F(x,y,u,k) IF_(x,y,u,k) = O, u z 0 )

(P.Wolfe'sduality[Wo161]), thenthe MCM method

x "'t" F_(x"t,y,u ',k) - a-t (y,x"t)L_(x ''t, u ''t ) = 0

U .,1 = A (y,x "l)d-I (x '÷l,y,k)u *

is an Interior Point Method for the dual problem (10.11) and the estimation

max { Ix"'t - x" I, I u"'t - u" I < ck't AO,,x ") lu" - u" I

(10.11)

(10.12)

(10.13)

(1o.14)
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holds true under the conditions of Theorem 2 for any (y, u°, k ) • D (*).

Finally note that the properties ofthe dual problem (10.4) (see Theorem 5) allows to improve signifi-

cantly estimation (10.14) by using smooth optimization methods for solving the dual problem (10.4)

in a way which is similar to (see [Pol 92], pp.206-208).

11 Concluding Remarks. The Lagrange multipliers, the specific role of the barrier parameter

along with the extension of the feasible set give rise to properties P1 - PS, which makes MIDF

F ( x, y, u, k ) substantially different from IDF F ( x, a ) -- F ( x, f0 (.v)).

One can view both MIDF F ( x, y, u, k ) and IDF F ( x, a ) as smooth approximations for

a nonsmooth and convex in x • Q : _(y, x ) > 0 function :

_.(x, _)=max{-In( ¢z-fo(x)),-in(_ -f0(x)+f,(x))t = l,...,m }.

Assuming again In t = - 0, for t ,: 0 it is easy to see that solving the problem (1.1) is equivalent to

solving the following unconstrained optimization problem

_.(x ",_ ) =aim( _,(x,_ ) / x e it"} = -in( o_-fo(X "))

Therefore the unconstrained minimizers

_(N,u,k) = argnun {F(x,y,u,k)lx e R" )

or

x(a) = argnfm { F ( x, a ) l x e R" }

one can view as an approximations for the solution x" The "quality" of approximations

._(y,u,k) and _(a) to x" depends on the "quality" of the smooth approximations F( x, y, u, k )

and F ( x, a) for the function _. ( x, a ). It is clear that these approximations are very different.

In case ofMIDFF(x,y, u. k)wehave lira _(y,u,k) =x' for any_edye int f_ and
II "" II *
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k> _"_-I/I .

Moreover

Um [ - -0
qU U

In case ofF( x, a) we have lira x (a) = x" only when a =f0 (Y) -" a" =f0 ( x" ). However

for any fixed "center" y ¢ int f2 we have

So, while the MIDF

liraF(x,a) "®
X.4 X

F (x,y, u',k ) isan exact smooth approximation for ),(x,a )atthe

solution x" for any fixed "center" y ¢ int_ and any fixed k > E u,', IDF F (x, a) does not exist at x"

and

tim - = +=.
Z_ z i

forany fixed"center"y e int_.

The "quality"of the approximation F( x,y, u,k ) has a substantialimpact on the "quality"

of the MCM (5.6)- (5.7).Method (5.6)- (5.7)converges only due to the Lagrange multipliers

update.Therefore_'om some pointon thefunctionF (x,y, u,k )aswell as itsgradientand Hessian

inx isnot changing much allereach Lagrange multipliersupdate,because lirau * = u" Being

well conditioned at the primal - dual solution ( x', u" ) the Hessian F"= ( x, y, u, k ) remains

well conditioned in the neighborhood of( x: u" ), so fi'om some point on ifz" I is "well" defined in

terms of Newton method (see[Sin86]) for the system F'z(x, y, u*, k )= 7" the new approximation x'

will be "well" defined for the system F'z (x, y, u' +I, k ) = 7' and it will remain true up to the end of

the process. Such x"we will call "hot" start (sec[MeIP95]) .Therefore fi'om the "hot" start on it takes

only 0 ( In In e "_) Newton steps to find a new primal approximation and update the Lagrange

multipliers.
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Dueto theestimation(6.4)everyLagrangemultipliers update shrinks the distance from x' and

u* to x" and u" by a factor 0 < ¥ < 1. Therefore it takes only 0 ( in e "_) • 0 ( In In e "t ) Newton's

step from the "hot" start to the solution.

To reach the "hot" start one can use any of path-following methods (see [NesN94])

The moment when the above mentioned acceleration begins depends on the triple (y, u, k )

First of all the triple O',u,k) has to be in D (*) and let's assume that yy. t -- ¢ k't A(y, x') = y -- 05,

i.e.

111

k> max{2c, (.v,x'),ko(.v,x'), E u:) (If.l)
J=l

-I R(x *,y,O,k) | and o > 0 the constant _ dependsThe constant c > O depends on the norm [ @(y.t)

( see Assertion I) on _ > 0, rain { u7 [ i = l,..., • }, max { u_" I I = I,..., • } and mineigval

f/(r)(x ° )if(r) (,¢ ° ). So the value of both c > 0 and k 0 > O depends on the "measure" of the nondege-

neracy of the constrained optimization problem.

Recall that in unconstrained optimization the properties of the smooth optimization methods

depend very much on the condition of the Hessian at the solution. One can consider this condition

as the "measure" of nondegeneracy of an unconstrained optimization problem.

The analysis which was undertaken above, highlights the parameters which are responsible

for the nondegeneracy of the constrained opftmizafion problem and the way in which it influences the

complexity of the NMCM. To complete the discussion we will make one more comment.

Due to (l I. l) tlm "hot" start depends very much not only on the "measure" of nondegeneracy

of the constrained optimization problem, but also on the value ofE u_'. The sum E u_"is critical for

the theory ofMIDF ( see Theorem I-5). On the other hand, _ u_"depends on the condition number

of the feas'ole set, i.e. on = = r 0 Ro"_, where r0 is the largest radius of the sphere inscribed in G and
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P_ is the smallest radius of the sphere circumscribed around Q.

Recall the the value _E u," is crucial in the theory of exact penalty methods (see [Ber82 ]).

However, in constrast to the exact penalty function, the MIDF is smooth and for some convex

programming problems possesses the self concordant (see [NesN94] properties when u -- e,.

Therefore, the NMCM combines the self-concordant properties of the Sh_ed Interior

Distance Function which guarantees the polynomial complexity of the Interior Points Methods, with

important local Pl - P5 properties. It allows us to speed up the process in the final stage, to make

the process manerically more stable, and has the potential for improving the complexity bounds at

least for nondegenerate convex problems (see [MeIP95]).

Due to (11.1) the moment when the process switches from the first phase to the second

depends on the "measure" of nondegeneracy of the constrained optimization problem as well as on

the condition number of the feasible set.

There are still a number of questions, which have to be answered.

First, we have to understand the behavior of the MCM in the absence of nondegeneracy

assumptions.

Second, the convergence under the fixedy e int G and k > _ is in no way a suggestion that

both the "center" and the barria" parameter have to be fixed. To find the optimal strategy for changing

the "center', the barr/er parameter or both is another important issue.

Third, to find conditions, which provide the convergence of the prox-type method (5.12).

Fourth, to specify the MIDF and MCM for LP and QP problems.

Finally, the complexity of the Newton MCM is one of the important and still unanswered

questions.
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Appendix

AI. Proof ofthe Proposition4.

k>0.

A-I

We consider the Hessian F" ( x', y, u; k ) for a fixed y e int f2 and

F"_(x,y, u*,k) = [(I- k-tYa_*)(:oO)- fo(X))-tf'o(x)- k-tY.u*_kfl(x)+ fo(y)

-A(x))"'(_'_x)-f'o(X))]'Ix-x.

- E(t- k- 'z,,*uV_(v)- fo(x))-2ff'o(x))_'dx) + (t - k- _*_(t_C.v)- fd_))- _f"o(x)+

k- _Zu*ghfgx) + foO) - fo(x))- a(k/"_(x) -A '(x))r(kf'g x) -fo '(x)) - k- _Zu*gkfgx) +

fo_) -A(x))-'(kf"_x) - f"o(X))]l_,._.

- E(I - k-l_r*_t_(j,,) - fo(x*))" a0e°o(.x'*))_"o(x*) 4- (1 - k-t_ad't)(fo(.V ) -A(.r*))" tf'°o(x* )

+ k- t_u*_foO) -fo(x*))-2(kf'_x*)-fo '(x*))r(kf'l(a:')--fro(x*))-

k- 'Xu*_(v) - fdx*))- '(¥"_x,) - fo "(:))3

- (gO) -A(._)Y- _[0_(v)-A(x*)Y-'(A '(_))r o'(x*) - k-_(Xu%_'_) -fo(.,e))-_.

(fo'(_*))_ '(x') +A "(x*) - k-'(t.u*_ "Oe) + O_O)-AOe))-'(Ar_e_ 'Oe))rJi '(_*)

- fro'(x'))r(y-u*,_'(_)) -ff'u*_f'gx*))rfo °(:)) + k-' (T.u*_ro'(.r*))_fo '(x*))

- r.,.*,f_"(x*)+ k-'(Xu*_"(x*)2

Taking intoaccount the K-K-T$ relationfo(x")= _, u/f, (x")we obtain

F_Cx',.v,u',/0= 0:o(y)-/oCx'))-'[L_Cx",u')

= (foCv)-foCx'))" [L="Cx',u') +

/,coo)
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A-2

Using the same considerations we obtain

H"= (x*,y, u*, k) - (fo_)- foCx*))-2[L"=(x*, .*))

+ 2_(.v)- fo(_'))- '(k(f'(,)(_.))r O"J"(_(_*)- (f'(,)(_.))r_._u.(W',(,)(_))].

A2. Formula for the MIDF Hessian F_(_,y,u,k)

F"_, y, ,,,k)/_. z --(l - k-'_O,) -fo(;))- _f'or(_f'o(_) + (l - k-'_)

• (fo(Y) -fo(._)) - ' f"o(._) - k-tT._k ft(_) + fo(Y) -fo(._)) - '(k f"t(._), f"o(_)) +

k- __ k fg_) + fo(Y) - J_(_))- 2(k f'g_) - f 'o(_)) 7"(k f' _) - f'o(_))

+ f"o(._) -- k-' (T,ue_"o(._ ) - ]_u_J_(.y) -A(;))(k f_(,_) +A(.y) -A('_)) - 'f"l('_))

+ k-'_0') -fo(._)Xkf_(._) +A(.Y) - fo(_')) - 'f"o('_) + k-'T.,u_(.y) -_(;))

• (k f_(,_) + fo(Y) -fo(._)) - '(k fj(._) + fo(Y) -fo('_)) - '(k2f'_(._"_(,_)

- _,f'o"(._',(._)- kf',"(_)f'o(._)+f'o"(._"o(._))_
- o_(.v)-fo(_))-'[(fo(.v)-fo(._))-'(/"o"(._'o(._)- k-' (_V"o"(._'o(._)+
f"o(._)- k-'(Z,,,Y"'o(._)- r.,V"',(._)+ k-'(z,_"o(._)+

k-'T._k f_(._)+A0')- fo(-_))-'(k_f'T(-_Y".,(._)- kf'or(._y"_(._)-kf'r(._y"o(._)+f'or(._V'o(._))].

75



References

[Ad RVK89]

[B= 86]

[Ber 82]

[Bui H 66]

[Dik 67]

[Dik 74]

[Fiat M 68]

[Gol T 89]

[Con 88]

[Con 92]

[Gros K 81]

[Hes 69]

Adler, I., gesende, M, Veiga, G., Karmarkar, N., An implementation of Karmarkar's

algorithm for linear programming, Mathematical Programming, Vol. 44, (1989)

pp.297-335.

Barnes, E.g., A variation on Karmarkar's algorithm for solving linear programming

problems, Mathematical Programming, Vol. 36, (1986) pp. 174-182.

Bertsekas, D., Constrained Optimization and Lagrange Multiplier Methods, Acade-

mic Press, New York (1982).

Bui-Trong Lieu, Hum'd, P., La methods des centres darts un espace topoiogique,

Num. Mat., Vol. 8, No. 1, (1966) pp. 56-67.

Dikin, I.I., Iterativ¢ solution of problems oflinem" .and quadratic programming, Soviet

Mathematics DoMady, Vol. 8, (1967), pp. 674-675.

Dildn, I.I., On the speed of an iterative process, Uprav_aemye Sistemy, 12, (1974)

pp. 54-64.

Fmcco, A.V., McCormick, G.P., Nonlinear Programming : Sequential Unconstrained

Minimization Techniques, W'dey, New York (1968).

Gol'shtein, E.G., Trefyakov, N.V., Modified Lagrangian functions. Theory and opti-

mization methods, Nauka, Moscow (1989) (in Russian).

Gonzaga, C., An algorithm for solving linear programming problems in 0 (n 3 L )

operations, N. Mesiddo, editor, Progress in Mathematical Programming - ( Springer

Verlag, Berlin, 1988) pp. 1 - 82.

C.mezaSa, C., Path-following methods for Linear Proganm_g, SIAM Review, 34, N2,

(1992) pp. 167-224

K., Kaplar_ A., Nonlinear prosnmm_ based on unconstrained minimiza-

tion, Novosibirsk Nauca, 1981, (in Russian).

Hestenes, M.g., Multiplier and gradient methods, JOTA, Vol. 4, No. 5, (1969), pp.

303-320.

76



[Huar 67a]

[Huar 67b]

[Jar S S 88]

[Kar84]

[Kh79]

[Lev 65]

[Man 75]

[Mel P 94]

_76]

[Nes N 94]

[New 65]

[Pol E 71]

[PolT 73]

Huard, P.,Resolutionofmathematicalprognunming with nonlinearconstraintsby the

method of centres.In:Nonlinear Programming, North Holland,Amsterdam (I967),

pp. 207-219.

Huard, P.,A method of centresby upper-bounding functionwith applications.In:

NonlinearProgramming, North Holland, Amsterdam (1967),pp. 1-30.

Jan'e,F., Sonnevend, G., Stoer,J.,An implementation of the method of analytic

centers,In:Benoussan, A.,Lions,J.L.,eds.,Lecture Notes inControl and Informa-

tionSciences,No. III,(Springer,Berlin1988).

Kammrkar, N.A., A new polynomial-timealgorithmfor linearprogramming, Combi-

natorica,Vol. 4,0954) pp. 373-395.

L.G.,Polynomial algorithminlinearprogranmiing SovietMath. Doklady,

Vol. 244, No. 5,(1979).

Levin,A.Y.,About thealgorithmforthe minimizationconvex fimctions,Dot,//Icad

Nauk SSSR, Vol. 160,No. 2,0965) (inRussian).

Mangasarian, O.L.,Unconstrained Lagrangians innonlinearprogramming, SIAMJ.

Control,Vol. 13,No. 4, (1975),pp. 772-791.

Melman A.,Polyak,IL,Newton Modified BarrierMethod forQP problems,Annals

of OperationsResearch -(specialvolume on InteriorPointMethods inMathematical

Progranuning )to appear,1995

IL,Rates ofconvergencefor a method of centresalgorithm,JOTA, Vol. 18,

No. 2,(1976),pp. 199-288.

Nesterov,Y., Nemirovsky, A., InteriorPointPolynomial Methods inConvex Prog-

ramming: Theory and Algorithms.SIAM, Philadelphia(I994).

Newman, D.I.Location of the maximum on unimodal surfaces,J..AC__A4',Vol. 12,

No. 3,(1965),pp. 395-398.

PolalgE.,Computational Method inOptimization:A UnifiedApproach. Academic

Press,New York, 1971.

Polyalg B.T., Treth/akov,N.V., The method of penaltyestimatesfor conditional

extremum problems,Z Vychisl.Matimat. Fiz.,Vol. 13,(1973),pp. 34-46.

77



[1'ol 86]

[Pol92]

Polyak, R., Controlled processes in external and equilibrium problems. Deposited

manuscript, V/N/T/(1986), 420p., Moscow, (in Russian).

Polyak, R., Modified Barrier Functions. (Theory and Methods), 54, Vol. 2, (1992),

pp. 177-222.

['PolTeb 95]

[Pow 69]

_en 88]

[Rock 74]

[Sh70]

[Sm 86]

[Son 85]

[Va/d 87]

[Van M F 86]

Polyak,R.,TebouIle,M, NonlinearRescalingand Proximal-likeMethods inConvex

Optimization,Research Report, Dept. of OR, George Mason University,(I995)

pp. 1-23.

Powell, M.J.D., A method for nonlinearconstraintsinminimizationproblems. In:

Optimization,Academic Press,New York (1969),pp. 283-298.

Renegar, J., A polynomial-time algorithm, based on Newton's method for linear

programming, MathematicalProgrammlng, Vol. 40, (1988)pp. 59-93.

Rockafellar, R.T., Augnented Lagrange multiplier functions and duality in nonconvex

programming, SIAMJ. Control, Voi. 12, No. 2, (1974), pp. 268-285.

Shor, N.Z., Utilization of the operation of space dilatation in the min/mization of

convex fimction, Kibernetica I (1970) pp. 6-12, English translation : Cybernetics 6,

pp. 7-15.

Smale, S., Newton's method estimates from data at one point. In: The Merging of

Disciplines in Pure, Applied and Computational Mathematics (Ewing, R.E, et al)

Springer-Verlag, New York-Berlin (1986) pp. 185-196.

SonnevencL (3., An analytical centre for polyhedrons and new classes of global

algorithms for linear (smooth convex) progranuning., In lecture Notes Control

Inform. Sci. 84, Springer-Verlag, New York, NY, (1985), pp. 866-876.

Vaidy_ P.M., An algorithm for linear programming which requires 0 (((m + n ) n2 +

(m + n )t. s )L ) arithmetic operations, Technical Report, AT & T Bell Laboratories,

Murray I-HII,NJ (1987).

Vanderbei, R.J., Meketon, M.S., Freednum, B.A., A modification of Karmarkar's

linear programming algorithm, Algorithmica, Vol. 1, (1986) pp. 395-407.

78



[Wol 61]

[Yud N 76]

[Zout 60]

[zPp63]

[ZPP 69]

Wolfe, P.,A dualityTheorem forNon-linearProgramming, Quart. Appl. Math. 19,

(1961),pp. 239-244.

Yudin,D.B., Nemirovsky, A.S.,Informationalcomplexity and eflScientmethods for

the solutionofconvex extremalproblems,Eco_ Mat. Metody 12 (1976),pp. 357-369

(inRussian)Matecon 13 (2),pp. 3-25 (inEnglish).

Zoutendijk,G.,Methods ofFeasibleDirections.ElsevierAmsterdam PublishingCo.,

New York (1960).

Zuchovitsky, S.I.,Polyak, ILK, Primal M.E., An algorithmfor solvinga convex

programming problem, Dokl. Acad, Nauk. SSSK Vol. 153,No. 5,(1963).

Zuchovitsky, S.I.,Polyak,ILA., Primak, M.E., Two methods forfindingan equili-

brium pointon n-person game, SovietMath. Dold.,Vol. I0,No. 2,(1969).

79


